Answer:
2a + 7
Step-by-step explanation:
-3a + 7 +5a
<em>subtract the negative 3 from the 5</em>
2a + 7
Find the distance between the points t(13, 1.6)t(13, 1.6) and v(5.4, 3.7)v(5.4, 3.7).
1
SEE ANSWER
ADD ANSWER
+5 PTS
Advertisement
Jeffrey5687 is waiting for your help.
Add your answer and earn points.
Answer Expert Verified
1.0/5
0
eco92
Ambitious
1.1K answers
4.7M people helped
The distance between any 2 points P(a,b) and Q(c,d) in the coordinate plane, is given by the formula:
Thus the distance between points t(13, 1.6) and v(5.4, 3.7) is found using the formula as:
Answer:
<h2>3.6°</h2>
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Find the angle between the given vectors to the nearest tenth of a degree.
u = <8, 7>, v = <9, 7>
we will be using the formula below to calculate the angle between the two vectors;

is the angle between the two vectors.
u = 8i + 7j and v = 9i+7j
u*v = (8i + 7j )*(9i + 7j )
u*v = 8(9) + 7(7)
u*v = 72+49
u*v = 121
|u| = √8²+7²
|u| = √64+49
|u| = √113
|v| = √9²+7²
|v| = √81+49
|v| = √130
Substituting the values into the formula;
121= √113*√130 cos θ
cos θ = 121/121.20
cos θ = 0.998
θ = cos⁻¹0.998
θ = 3.6° (to nearest tenth)
Hence, the angle between the given vectors is 3.6°
Answer:
the third one is your answer
Step-by-step explanation:
There are 36 inches in a yard so 36*2.54 = 91.44 centimeters