Answer:
a) 3.47% probability that there will be exactly 15 arrivals.
b) 58.31% probability that there are no more than 10 arrivals.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
![P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-%5Cmu%7D%2A%5Cmu%5E%7Bx%7D%7D%7B%28x%29%21%7D)
In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given time interval.
If the mean number of arrivals is 10
This means that ![\mu = 10](https://tex.z-dn.net/?f=%5Cmu%20%3D%2010)
(a) that there will be exactly 15 arrivals?
This is P(X = 15). So
![P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-%5Cmu%7D%2A%5Cmu%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 15) = \frac{e^{-10}*(10)^{15}}{(15)!} = 0.0347](https://tex.z-dn.net/?f=P%28X%20%3D%2015%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B15%7D%7D%7B%2815%29%21%7D%20%3D%200.0347)
3.47% probability that there will be exactly 15 arrivals.
(b) no more than 10 arrivals?
This is ![P(X \leq 10)](https://tex.z-dn.net/?f=P%28X%20%5Cleq%2010%29)
![P(X \leq 10) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)](https://tex.z-dn.net/?f=P%28X%20%5Cleq%2010%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%2B%20P%28X%20%3D%203%29%20%2B%20P%28X%20%3D%204%29%20%2B%20P%28X%20%3D%205%29%20%2B%20P%28X%20%3D%206%29%20%2B%20P%28X%20%3D%207%29%20%2B%20P%28X%20%3D%208%29%20%2B%20P%28X%20%3D%209%29%20%2B%20P%28X%20%3D%2010%29)
![P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-%5Cmu%7D%2A%5Cmu%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 0) = \frac{e^{-10}*(10)^{0}}{(0)!} = 0.000045](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B0%7D%7D%7B%280%29%21%7D%20%3D%200.000045)
![P(X = 1) = \frac{e^{-10}*(10)^{1}}{(1)!} = 0.00045](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B1%7D%7D%7B%281%29%21%7D%20%3D%200.00045)
![P(X = 2) = \frac{e^{-10}*(10)^{2}}{(2)!} = 0.0023](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B2%7D%7D%7B%282%29%21%7D%20%3D%200.0023)
![P(X = 3) = \frac{e^{-10}*(10)^{3}}{(3)!} = 0.0076](https://tex.z-dn.net/?f=P%28X%20%3D%203%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B3%7D%7D%7B%283%29%21%7D%20%3D%200.0076)
![P(X = 4) = \frac{e^{-10}*(10)^{4}}{(4)!} = 0.0189](https://tex.z-dn.net/?f=P%28X%20%3D%204%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B4%7D%7D%7B%284%29%21%7D%20%3D%200.0189)
![P(X = 5) = \frac{e^{-10}*(10)^{5}}{(5)!} = 0.0378](https://tex.z-dn.net/?f=P%28X%20%3D%205%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B5%7D%7D%7B%285%29%21%7D%20%3D%200.0378)
![P(X = 6) = \frac{e^{-10}*(10)^{6}}{(6)!} = 0.0631](https://tex.z-dn.net/?f=P%28X%20%3D%206%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B6%7D%7D%7B%286%29%21%7D%20%3D%200.0631)
![P(X = 7) = \frac{e^{-10}*(10)^{7}}{(7)!} = 0.0901](https://tex.z-dn.net/?f=P%28X%20%3D%207%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B7%7D%7D%7B%287%29%21%7D%20%3D%200.0901)
![P(X = 8) = \frac{e^{-10}*(10)^{8}}{(8)!} = 0.1126](https://tex.z-dn.net/?f=P%28X%20%3D%208%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B8%7D%7D%7B%288%29%21%7D%20%3D%200.1126)
![P(X = 9) = \frac{e^{-10}*(10)^{9}}{(9)!} = 0.1251](https://tex.z-dn.net/?f=P%28X%20%3D%209%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B9%7D%7D%7B%289%29%21%7D%20%3D%200.1251)
![P(X = 10) = \frac{e^{-10}*(10)^{10}}{(10)!} = 0.1251](https://tex.z-dn.net/?f=P%28X%20%3D%2010%29%20%3D%20%5Cfrac%7Be%5E%7B-10%7D%2A%2810%29%5E%7B10%7D%7D%7B%2810%29%21%7D%20%3D%200.1251)
![P(X \leq 10) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) = 0.000045 + 0.00045 + 0.0023 + 0.0076 + 0.0189 + 0.0378 + 0.0631 + 0.0901 + 0.1126 + 0.1251 + 0.1251 = 0.5831](https://tex.z-dn.net/?f=P%28X%20%5Cleq%2010%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%2B%20P%28X%20%3D%203%29%20%2B%20P%28X%20%3D%204%29%20%2B%20P%28X%20%3D%205%29%20%2B%20P%28X%20%3D%206%29%20%2B%20P%28X%20%3D%207%29%20%2B%20P%28X%20%3D%208%29%20%2B%20P%28X%20%3D%209%29%20%2B%20P%28X%20%3D%2010%29%20%3D%200.000045%20%2B%200.00045%20%2B%200.0023%20%2B%200.0076%20%2B%200.0189%20%2B%200.0378%20%2B%200.0631%20%2B%200.0901%20%2B%200.1126%20%2B%200.1251%20%2B%200.1251%20%3D%200.5831)
58.31% probability that there are no more than 10 arrivals.
Answer:
try x= 4z/y
Step-by-step explanation:
Jack is in debt after borrowing some money. He has more than -3.5 dollars and less than -2.5 dollars. Write this as an inequality.
Answer:
6.7 cm
Step-by-step explanation:
To make use of the Law of Sines for finding b, you need to know the missing angle B. Since the sum of the angles of a triangle is 180°, you can find angle B as ...
B = 180° -82° -55° = 43°
Now, you put the numbers you know into the formula given and solve for b.
sin(A)/a = sin(B)/b
sin(55°)/(8 cm) = sin(43°)/b
Cross multiplying gives ...
b·sin(55°) = (8 cm)·sin(43°)
and dividing by the coefficient of b gives you ...
b = (8 cm)·sin(43°)/sin(55°) ≈ 6.7 cm