1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
14

The teacher spent 1/8 of the class period reviewing the answers to a worksheet. The class period was 1 1/2 hours length. How man

y minutes did the teacher spend reviewing the worksheet? Enter your response as a decimal. ​
Mathematics
1 answer:
Anestetic [448]3 years ago
4 0

Answer:

11 minutes and 15 seconds

Step-by-step explanation:

You might be interested in
Brainliest for best answer
Naily [24]

Answer:

Step-by-step explanation:

________

Good evening ,

_______________

-4x+3y=-12

-2x+3y=-18

This system is the same as

y = (4/3)x - 4

y = (2/3)x - 6

We note that the two coefficients 4/3 and 2/3 are positives

So the right answer is C (graph 2).

___

:)

3 0
4 years ago
Mera is making a food guide for health class. She needs the measurements of this picture to enlarge it for a poster. Remember to
astraxan [27]

Answer:

you gatta show the picture

Step-by-step explanation:

5 0
3 years ago
The function T(n) is defined below. Which of the following are equal to T(8)? Check all that apply. T(n) = 4n - 5
Klio2033 [76]
T(n)=4n-5\\\\T(8)=4\cdot8-5=32-5=27\\\\T(5)+T(3)=4\cdot5-5+4\cdot3-5=20-5+12-5=22\neqT(8)\\\\T(7)+4=4\cdot7-5+4=28-5+4=27\\\\Answer:\\B.\ 27\\D.\ T(7)+4
3 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
the angle of depression from an airplane at an altitude of 8000 feet to the airport is 7 degrees. Find the direct distance from
Aleks [24]

Answer:

direct distance = 65,644.07 feet

horizontal distance = 65,154.77 feet

Step-by-step explanation:

The angle of depression is the angle that the airplane does with the horizontal plane.

So, if this angle is 7° and the airplane is at an altitude if 8000 feet, we can find the direct distance and the horizontal distance using the tangent and the sine relations of the angle.

In the tangent of the angle, the opposite side will be the height of the airplane, and the adjacent side will be the horizontal distance (hd), so:

tangent(7) = 8000 / hd

hd = 8000 / tangent(7) = 65,154.77 feet

In the sine of the angle, the opposite side will be the height of the airplane, and the hypotenusa will be the direct distance (d), so:

sine(7) = 8000 / d

d = 8000 / sine(7) = 65,644.07 feet

5 0
3 years ago
Other questions:
  • It’s Choose More than one answer Just to let you know ..and can someone please help ..please
    10·2 answers
  • 10 POINTS!!! I WILL GIVE BRAINLIEST!
    13·2 answers
  • Which box plot represents the data?<br> 30, 35, 25, 5, 5, 25, 40, 45, 50, 10, 15, 40
    13·1 answer
  • What is a factor of 27
    5·2 answers
  • one side of a rectangle is 4 feet shorter than four times the other side. find the sides of the are if the rectangle is 24 squar
    6·1 answer
  • Hector spent 3/4 of his money the day after he cashed his paycheck of $50. Let m represent the amount of money Hector spent.
    14·1 answer
  • What is 38,496 rounded to the nearest ten thousand
    5·2 answers
  • What is the GCF of 105,30 and 75 and How?
    14·2 answers
  • Please help me due today desperate
    9·2 answers
  • Can someone help me out thx
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!