x= -623/18
Hope it helps for you,buddy!
Answer:
ASA and AAS
Step-by-step explanation:
We do not know if these are right triangles; therefore we cannot use HL to prove congruence.
We do not have 2 or 3 sides marked congruent; therefore we cannot use SSS or SAS to prove congruence.
We are given that EF is parallel to HJ. This makes EJ a transversal. This also means that ∠HJG and ∠GEF are alternate interior angles and are therefore congruent. We also know that ∠EGF and ∠HGJ are vertical angles and are congruent. This gives us two angles and a non-included side, which is the AAS congruence theorem.
Since EF and HJ are parallel and EJ is a transversal, ∠JHG and ∠EFG are alternate interior angles and are congruent. Again we have that ∠EGF and ∠HGJ are vertical angles and are congruent; this gives us two angles and an included side, which is the ASA congruence theorem.
Answer:
2 < AB < 18
Step-by-step explanation:
By "y = −9x2 − 2x" I assume you meant <span>y = −9x^2 − 2x (the "^" symbol represents exponentiation).
Let's find the first derivative of y with respect to x: dy/dx = -18x - 2. This is equivalent to the slope of the tangent line to the (parabolic) curve. Now let this derivative (slope) = 0 and solve for the critical value: -18x - 2 = 0, or
-18x = 2. Solving for x, x = -2/18, or x = -1/9.
When x = -1/9, y = -9(-1/9)^2 - 2(-1/9). This simplifies to y = -9/9 + 2/9, or
y = -7/9.
The only point at which the tangent to the curve is horiz. is (-1/9,-7/9).</span>
I don't know what you have to do but I'm trying to do my first answer srry