1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
3 years ago
12

I’ll love you forever if you help me <3

Physics
1 answer:
lana66690 [7]3 years ago
7 0
It’s meee ;) answer is 1.7 (d)

You might be interested in
Two identical objects are moving directly toward one another at the same speed v. ~v −~v m m What is the total kinetic energy of
Natalka [10]
<span>Answer: Correct answer is just add the two kinetic energies; E = (1/2)mv^2 + (1/2)mv^2</span>
5 0
3 years ago
Read 2 more answers
A 4.25 kg block is sent up a ramp inclined at an angle theta=37.5° from the horizontal. It is given an initial velocity ????0=15
wel

Answer:

d = 11.79 m

Explanation:

Known data

m=4.25 kg  : mass of the block

θ =37.5°  :angle θ of the ramp with respect to the horizontal direction

μk= 0.460  : coefficient of kinetic friction

g = 9.8 m/s² : acceleration due to gravity

Newton's second law:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

We define the x-axis in the direction parallel to the movement of the block on the ramp and the y-axis in the direction perpendicular to it.

Forces acting on the block

W: Weight of the block : In vertical direction

N : Normal force : perpendicular to the ramp

f : Friction force: parallel to the ramp

Calculated of the W

W= m*g

W=  4.25 kg* 9.8 m/s² = 41.65 N

x-y weight components

Wx= Wsin θ= 41.65*sin 37.5° = 25.35 N

Wy= Wcos θ =41.65*cos 37.5° =33.04 N

Calculated of the N

We apply the formula (1)

∑Fy = m*ay    ay = 0

N - Wy = 0

N = Wy

N = 33.04 N

Calculated of the f

f = μk* N= 0.460*33.04

f = 15.2 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

-Wx-f = m*a

 -25.35-15.2 = (4.25)*a

-40.55 =  (4.25)*a

a = (-40.55)/ (4.25)

a = -9.54 m/s²

Kinematics of the block

Because the block moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d Formula (2)

Where:  

d:displacement  (m)

v₀: initial speed  (m/s)

vf: final speed   (m/s)

Data:

v₀ = 15 m/s

vf = 0

a = -9.54 m/s²

We replace data in the formula (2)  to calculate the distance along the ramp the block reaches before stopping (d)

vf²=v₀²+2*a*d

0 = (15)²+2*(-9.54)*d

2*(9.54)*d =   (15)²

(19.08)*d = 225

d = 225 / (19.08)

d = 11.79 m

3 0
3 years ago
.A coin rolls off the edge of a table. The coin
geniusboy [140]

Answer:

Apply the following formulae horizontally And get A value for time

Remember horizontal acceleration is zero

s  = ut +  \frac{1}{2}a {t}^{2}   \\ 0.8 = 1.7 \times t \\  \frac{0.8}{1.7}  = t \\ t = 0.47s

and then to find the height apply the same above equation vertically...remember vertical initial velocity is zero

s = ut +  \frac{1}{2} a {t}^{2}  \\ s =  \frac{1}{2}  \times 10 \times (0.47) ^{2}  \\ s = 1.1045m

5 0
3 years ago
As a laudably skeptical physics student, you want to test Coulomb's law. For this purpose, you set up a measurement in which a p
kherson [118]

Explanation:

The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

F=\frac{kq_1q_2}{d^2}

In this case we have an electron (-e) and a proton (e), so:

F=-\frac{ke^2}{d^2}\\F=-\frac{8.99*10^9\frac{N\cdot m^2}{s^2}(1.6*10^{-19}C)^2}{(933*10^{-9}m)^2}\\F=-2.64*10^{-16}N

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

F=2.64*10^{-16}N

3 0
3 years ago
Bob is threatening Tom’s life with a giant laser with wavelength (650 nm), a distance (D = 10 m) from the wall James is shackled
Fittoniya [83]

Answer:

He should stand from the center of laser pointed on the wall at 1.3 m.

Explanation:

Given that,

Wave length = 650 nm

Distance =10 m

Double slit separation d = 5 μm

We need to find the position of fringe

Using formula of distance

d\sin\theta=n\lambda

d\dfrac{y}{D}=n\lambda

y=\dfrac{\lambda D}{d}

Put the value into the formula

y=\dfrac{650\times10^{-9}\times10}{5\times10^{-6}}

y=1.3\ m

Hence, He should stand from the center of laser pointed on the wall at 1.3 m.

8 0
3 years ago
Other questions:
  • What is the best definition of muscular strength
    14·1 answer
  • How much heat is required to completely boil away 0.200 kg of water (ΔHv = 2.26 × 103 kJ/kg)?
    14·2 answers
  • Materials that are magnetic have_________that are lined up in the same orientation?
    14·1 answer
  • Break the word "composition" into its parts. Match each part to the correct label
    15·1 answer
  • Explain briefly work energy and power
    11·1 answer
  • In an elastic collision, the momentum is _____, and the mechanical energy is _____.
    10·1 answer
  • A neighborhood has experienced a steep increase in the amount of waste generated from individual houses. Which solutions will de
    9·2 answers
  • How could you calculate the elasticity of a collision if you know the approach velocity and separation velocity of the colliding
    7·1 answer
  • Evelyn meets her friends at a local restaurant 5 km away. Afterwards she stops at the post office which is another 3 km away, bu
    11·1 answer
  • 3. What is the second lesson from this study Ms. Pearson mentions?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!