The given data is incomplete. The complete question is as follows.
At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coefficient of friction was estimated to be 0.36. Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. (why does the car's mass not matter?)
Explanation:
Let us assume that v is the final velocity and u is the initial velocity of the car. Let s be the skid marks and
be the friction coefficient and m be the mass of car.
Hence, the given data is as follows.
v = 0, s = 84 m,
= 0.36
According to Newton's law of second motion the expression for acceleration is as follows.
F = ma
= ma
= ma
a = 
Also,



= 
= 24.36 m/s
Thus, we can conclude that the speed of the car when the driver slammed on (and locked) the brakes is 24.36 m/s.
Answer:
691.13 nm
Explanation:
d = width of the slit = 0.11 x 10⁻³ m
θ = angle of diffraction pattern = 0.72° degree
λ = wavelength of the light = ?
m = order = 2 (since second minimum)
for the second minimum diffraction pattern we use the equation
d Sinθ = m λ
Inserting the values
(0.11 x 10⁻³) Sin0.72 = (2) λ
λ = 691.13 x 10⁻⁹ m
λ = 691.13 nm
<h3><u>Given</u> :</h3>
Three identical resistors of resistances 5Ω, 10Ω and 30Ω are connected with a battery of 12V
<h3><u>To Find</u> :</h3>
We have to find current through the each resistor and equivalent resistance of circuit
<h3><u>SoluTion</u> :</h3>
➝ Equivalent resistance of series connection is given by
➝ We know that, Equal current flow through each resistor in series connection.
➝ As per ohm's law, Current flow through a conductor is directly proportional to the applied potential difference.
◈ <u>Equivalent resistance</u> :
⇒ Req = R1 + R2 + R3
⇒ Req = 5 + 10 + 30
⇒ <u>Req = 45Ω</u>
◈ <u>Current flow in circuit</u> :
⇒ V = IReq
⇒ 12 = I × 45
⇒ <u>I = 0.27A</u>
፨ Therefore, 0.27A current will flow through each resistor.
Answer:
a) A=0.125 m
b) T = 1.72 s
c) f= 0.58 Hz
Explanation:
a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m
b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it has passed through the equilibrium point only once.
This means that the period must be exactly the double of this time:
T = 2*0. 860 sec = 1.72 sec.
c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency f as follows:
f = 1/T = 1/ 1.72 s= 0.58 Hz