We are given coordinates of a continuous function f(x)
(–2, 0)
(0, –2)
(2, –1)
(4, 0).
We need to find the possible turning point for the continuous function.
<u>Note: Turning point is a point on the graph where slope of the curve changes from negative to positive or positive to negative.</u>
<em>A turning point is always lowest or highest point of the curve (where bump of the graph seen).</em>
For the given coordinates we can see that (–2, 0) and (4, 0) coordinates are in a same line, that is on the x-axis.
But the coordinate (0, –2) is the lowest point on the graph.
Therefore, (0, –2) is the turning point for the continuous function given.
Answer:
b
Step-by-step explanation:
6
here is the following. no following figure so the answer is none.
Answer:
Step-by-step explanation:
Answer:
11. ∠ABC = 96°
12. (x – 2)² + (y + 3)² = 4
Step-by-step explanation:
11. The inscribe angle (the angle inside the circle, ∠ABC) is equal to half of the outer circle.
∠ABC = 1/2∠AC
∠ABC = 1/2(192°) = 96°
12. The general equation for a circle is: (x – h)² + (y – k)² = r², where
h and k are the center of the circle (h, k), and r is the radius.
Look at the graph, the circle is centered at (2, -3), so
h=2
k=-3
and the radius of the circle is 2, so
r=2
Plug it all back into the equation:
(x – h)² + (y – k)² = r²
(x – (2))² + (y – (-3))² = (2)²
(x – 2)² + (y + 3)² = 4