Simplifying radical expressions expression is important before addition or subtraction because it you need to which like terms can be added or subtracted. If we hadn't simplified the radical expressions, we would not have come to this solution. In a way, this is similar to what would be done for polynomial expression.
There is some ambiguity here which could be removed by using parentheses. I'm going to assume that you actually meant:
x-3
h(x) = ---------------
(x^3-36x)
To determine the domain of this function, factor the denominator:
x^3 - 36x = x(x^2 - 36) = x(x-6)(x+6)
The given function h(x) is undefined when the denominator = 0, which happens at {-6, 0, 6}.
Thus, the domain is "the set of all real numbers not equal to -6, 0 or 6."
Symbolically, the domain is (-infinity, -6) ∪ (-6, 0) ∪ (0, 6) ∪ (6, +infinity).
Answer:
Shown - See explanation
Step-by-step explanation:
Solution:-
- The given form for rate of change is:
8 sec(x) tan(x) − 8 sin(x).
- The form we need to show:
8 sin(x) tan2(x)
- We will first use reciprocal identities:

- Now take LCM:

- Using pythagorean identity , sin^2(x) + cos^2(x) = 1:

- Again use pythagorean identity tan(x) = sin(x) / cos(x):
