The length of AB will be 10 units. Option B is corect. The formula for the distance between the two points is applied in a given problem.
<h3>What is the distance between the two points?</h3>
The length of the line segment connecting two places is the distance between them.
The distance between two places is always positive, and equal-length segments are referred to as congruent segments.
The given coordinate in the problem is;
(x₁,y₁)=(-2,-4)
(x₂, y₂)= (-8, 4)
The distance between the two points is found as;

Hence, option B is corect.
To learn more about the distance between the two points, refer to;
brainly.com/question/16410393
#SPJ1
Simple...
you have:

You want to find m-->>>
1.)Isolate m

Leaving you with...
F*

=

Keep isolating m-->>>


Square root to solve what just m is-->>>

=

That is how you solve for m...
Thus, your answer.
Yes the answer is option A