Answer:

Step-by-step explanation:
Domain:

![\dfrac{x^2+9y^2}{x-3y}+\dfrac{6xy}{3y-x}=\dfrac{x^2+9y^2}{x-3y}+\dfrac{6xy}{-(x-3y)}\\\\=\dfrac{x^2+9y^2}{x-3y}-\dfrac{6xy}{x-3y}=\dfrac{x^2+9y^2-6xy}{x-3y}\\\\=\dfrac{x^2-2(x)(3y)+(3y)^2}{3y-x}=\dfrac{(x-3y)^2}{3y-x}\\\\=\dfrac{\bigg[-1(3y-x)\bigg]^2}{3y-x}=\dfrac{(-1)^2(3y-x)^2}{3y-x}\\\\=\dfrac{1(x-3y)(x-3y)}{x-3y}=x-3y](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5E2%2B9y%5E2%7D%7Bx-3y%7D%2B%5Cdfrac%7B6xy%7D%7B3y-x%7D%3D%5Cdfrac%7Bx%5E2%2B9y%5E2%7D%7Bx-3y%7D%2B%5Cdfrac%7B6xy%7D%7B-%28x-3y%29%7D%5C%5C%5C%5C%3D%5Cdfrac%7Bx%5E2%2B9y%5E2%7D%7Bx-3y%7D-%5Cdfrac%7B6xy%7D%7Bx-3y%7D%3D%5Cdfrac%7Bx%5E2%2B9y%5E2-6xy%7D%7Bx-3y%7D%5C%5C%5C%5C%3D%5Cdfrac%7Bx%5E2-2%28x%29%283y%29%2B%283y%29%5E2%7D%7B3y-x%7D%3D%5Cdfrac%7B%28x-3y%29%5E2%7D%7B3y-x%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%5Cbigg%5B-1%283y-x%29%5Cbigg%5D%5E2%7D%7B3y-x%7D%3D%5Cdfrac%7B%28-1%29%5E2%283y-x%29%5E2%7D%7B3y-x%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%28x-3y%29%28x-3y%29%7D%7Bx-3y%7D%3Dx-3y)
Used:
The distributive property: a(b + c) = ab + ac
(a - b)² = a² - 2ab + b²
Answer:
1) Star: (-5,9) 2) Lightning (0,8)
3) Circle: (4,-7) 4) Heart (-3,-8)
5) Cross (6,9) 6) Triangle (0,6)
7) Moon (-4,9) 8) Square (-4,6)
9) Diamond (-1,-4) 10) Music Note (8,1)
Step-by-step explanation:
The way that I solved this was I first set up (x,y). You must find the placement of the x-axis or the horizontal line. Then you find the 7-axis or the vertical line. For example, with the star, the shape is 5 to the left which is -5 and then goes 9 lines upward.
By plunging 5 into the equation as x, you have the equation
7(5) - 15
7 * 5 = 35 so
35 - 15
f(5) = 20
Answer:
a ratio is a rate is something left to right like a book so say if a Problem say there's a rate 14 boys to 12 girls then he says rate girls to boys then it would be 12:14 or 12 to 14
Step-by-step explanation:
Please give me brainlyest.
Let <em>a</em> (<em>n</em>) denote the <em>n</em>-th term in the progression. Consecutive terms in the sequence differ by a fixed constant - call it <em>c</em> - such that
<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + <em>c</em>
Let <em>a</em> = <em>a</em> (1) be the first term in the sequence. We can solve for <em>a</em> (<em>n</em>) in terms of <em>a</em> alone:
<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + <em>c</em>
<em>a</em> (<em>n</em>) = (<em>a</em> (<em>n</em> - 2) + <em>c</em>) + <em>c</em> = <em>a</em> (<em>n</em> - 2) + 2<em>c</em>
<em>a</em> (<em>n</em>) = (<em>a</em> (<em>n</em> - 3) + <em>c</em>) + <em>c</em> = <em>a</em> (<em>n</em> - 3) + 3<em>c</em>
and so on, down to
<em>a</em> (<em>n</em>) = <em>a</em> + (<em>n</em> - 1) <em>c</em>
The sum of the first <em>n</em> terms is then

Since this is equal to 3<em>n</em> ^2 + 5<em>n</em>, it follows that
<em>c</em>/2 = 3 => <em>c</em> = 6
<em>a</em> - <em>c</em>/2 = 5 => <em>a</em> = 8
So the sequence is
<em>a</em> (<em>n</em>) = 8 + (<em>n</em> - 1) 6 = 6<em>n</em> + 2