We need a bit more context lol
The concentration of Iron in the galvanic (voltaic) cell Fe(s) + Mn²⁺(aq) ⟶ Fe²⁺(aq) + Mn(s) is 0.02297 M.
<h3>What is the Nernst Equation?</h3>
The Nernst equation enables us to identify the cell potential(voltage) in presence of non-standard conditions in a galvanic cell. It can be expressed by using the formula:
![\mathbf{E_{cell} = E_o - \dfrac{0.059}{n} \times log \dfrac{[Fe^+]}{[Mn^{2+}]}}](https://tex.z-dn.net/?f=%5Cmathbf%7BE_%7Bcell%7D%20%3D%20E_o%20-%20%5Cdfrac%7B0.059%7D%7Bn%7D%20%5Ctimes%20log%20%5Cdfrac%7B%5BFe%5E%2B%5D%7D%7B%5BMn%5E%7B2%2B%7D%5D%7D%7D)
where;
- n = Number of electrons = 2
= Initial voltage = 0.77 V
= Cell voltage = 0.78 V
= Manganese concentration = 0.050 M
Replacing the values into the above equation, we have:
![\mathbf{0.78 = 0.77 - \dfrac{0.059}{2} \times log \dfrac{[Fe^{2+}]}{[0.050]}}](https://tex.z-dn.net/?f=%5Cmathbf%7B0.78%20%3D%200.77%20-%20%5Cdfrac%7B0.059%7D%7B2%7D%20%5Ctimes%20log%20%5Cdfrac%7B%5BFe%5E%7B2%2B%7D%5D%7D%7B%5B0.050%5D%7D%7D)
![\mathbf{0.78 -0.77= -0.0296\times log \dfrac{[Fe^{2+}]}{[0.050]}}](https://tex.z-dn.net/?f=%5Cmathbf%7B0.78%20-0.77%3D%20-0.0296%5Ctimes%20log%20%5Cdfrac%7B%5BFe%5E%7B2%2B%7D%5D%7D%7B%5B0.050%5D%7D%7D)
![\mathbf{log^{-1} (-0.3378) = \dfrac{[Fe^{2+}]}{[0.050]}}](https://tex.z-dn.net/?f=%5Cmathbf%7Blog%5E%7B-1%7D%20%28-0.3378%29%20%3D%20%5Cdfrac%7B%5BFe%5E%7B2%2B%7D%5D%7D%7B%5B0.050%5D%7D%7D)


Learn more about using the Nernst equation here:
brainly.com/question/24258023
In the excretory system, the waste materials are filtered from the blood. They are gotten rid off in order to maintain internal chemical homeostasis.
<h3>What is the Excretory System?</h3>
The excretory system can be described as a biological system that aids the body in removing unwanted materials from fluids of the body of organisms.
The main reason for the function of the excretory system is to maintain internal chemical homeostasis and prevent the body from damage.
Learn more about the excretory system on:
brainly.com/question/1171674
#SPJ1