Hello!
the answer is CUBE
I hope this helps, and have a nice day!
3 divided by 1 quarter is equal to 12 because
3 divided 1/4 is 12 . 1/4 is a quarter. so this is how you get your answer. 3 divide 1/4 = 3/1 multiply 4/1=12/1 =12
Answer:
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20%5Cbigg%28%20e%5E%5CBig%7B%5Cfrac%7B4%7D%7B25%7D%7D%20-%20e%5E%5CBig%7B%5Cfrac%7B4%7D%7B81%7D%7D%20%5Cbigg%29)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]: ![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Eb_a%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%3D%20F%28b%29%20-%20F%28a%29)
Integration Property [Multiplied Constant]: ![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7Bcf%28x%29%7D%20%5C%2C%20dx%20%3D%20c%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx)
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:
![\displaystyle u = 4x^{-2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20u%20%3D%204x%5E%7B-2%7D)
- [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:
![\displaystyle du = \frac{-8}{x^3} \ dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20du%20%3D%20%5Cfrac%7B-8%7D%7Bx%5E3%7D%20%5C%20dx)
- [Bounds] Switch:
![\displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7Bx%20%3D%209%20%2C%5C%20u%20%3D%204%289%29%5E%7B-2%7D%20%3D%20%5Cfrac%7B4%7D%7B81%7D%7D%20%5Catop%20%7Bx%20%3D%205%20%2C%5C%20u%20%3D%204%285%29%5E%7B-2%7D%20%3D%20%5Cfrac%7B4%7D%7B25%7D%7D%7D%20%5Cright.)
<u>Step 3: Integrate Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B-1%7D%7B8%7D%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B-8%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx)
- [Integral] U-Substitution:
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B-1%7D%7B8%7D%5Cint%5Climits%5E%7B%5Cfrac%7B4%7D%7B81%7D%7D_%7B%5Cfrac%7B4%7D%7B25%7D%7D%20%7Be%5E%5Cbig%7Bu%7D%7D%20%5C%2C%20du)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B-1%7D%7B8%7D%28e%5E%5Cbig%7Bu%7D%29%20%5Cbigg%7C%20%5Climits%5E%7B%5Cfrac%7B4%7D%7B81%7D%7D_%7B%5Cfrac%7B4%7D%7B25%7D%7D)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B-1%7D%7B8%7D%20%5Cbigg%28%20e%5E%5CBig%7B%5Cfrac%7B4%7D%7B81%7D%7D%20-%20e%5E%5CBig%7B%5Cfrac%7B4%7D%7B25%7D%7D%20%5Cbigg%29)
- Simplify:
![\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E9_5%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%5Cbig%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20%5Cbigg%28%20e%5E%5CBig%7B%5Cfrac%7B4%7D%7B25%7D%7D%20-%20e%5E%5CBig%7B%5Cfrac%7B4%7D%7B81%7D%7D%20%5Cbigg%29)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Part A:
23 + 13x ≤ 81
Part B:
23 + 13x ≤ 81
<u>-23 </u> <u>-23</u>
13x ≤ 58
<u>/13 </u> <u>/13</u>
x ≤ 4.46
Part C:
This means that you can have 4 cheeseburgers while keeping the fat under 81 grams.
Answer:
true
Step-by-step explanation:
If the standard deviation is increased and the sample size and confidence level stay the same, then the margin of error will also be increased