1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
3 years ago
5

Please help me on this

Mathematics
1 answer:
Ivahew [28]3 years ago
7 0

Answer:

I believe your answer is going to be roughly 767.8 which if you need to use fractions would be 767 4/5.

Step-by-step explanation:

Hope this helped in some way

You might be interested in
Need help got 20min left almost done with class please let me know if you can help me finish this class
yanalaym [24]

Answer:

Linear because every x, it goes -4 in y.  Therefore, it is linear.

Hope this helps :)

5 0
3 years ago
Read 2 more answers
If I had 24 apples and X blue berries there are 9 times as many blueberries than apples.
Ganezh [65]

Answer: X=216

so, you have 216 blueberries

7 0
3 years ago
Read 2 more answers
Find the absolute maximum and minimum values of the following functions on the given curves functions:
bagirrra123 [75]

Answer:

Solution has explained below:

Step-by-step explanation:

(a) f(x,y) = x+y

To find out the maximum and minimum values, we need to find first and second derivatives, we have

fx= 1, fx₁=0 and

fy= 1 and fyy=0

For stationary points fx=fy=0, which gives,

1=1=0, so that there is just one stationary point, (x,y)=(0,0)

If  fx₁  < 0 and fyy < 0, function is maximum

If  fx₁ > 0 and fyy > 0, function is minimum.

(b) g(x,y) = xy

Sol: To find out the maximum and minimum values, we need to find first and second derivatives, we have

fx= 1 and fy  = 1

fx₁ = 0 and fyy =0

for stationary points fx = fy =0, which gives 1=1=0, so that there is just one stationary points, (x,y) =(0,0)

If fx₁ < 0 and fyy < 0, function is maximum.

If  fx₁  > 0 and fyy> 0, function is minimum.

c) h(x,y) = 2x2 + y2

sol: To find out the maximum and minimum values, we need to find first and second derivatives, we have

fx = 4x  and fy = 2y

fx₁= 4  and fyy = 2

Now, taking fx = 0 and fy = 0

Gives x=0 and y=0,

Stationary points are (x,y) = (0,0)

If fx₁ < 0 and fyy < 0, solution is maximum,

If fx₁ > 0 and fyy > 0, solution is minimum,

Here, fx₁ = 4 > 0 and fyy = 2 > 0.

6 0
3 years ago
HELP ASAP (Geometry)
Andrei [34K]

1) Parallel line: y=-2x-3

2) Rectangle

3) Perpendicular line: y = 0.5x + 2.5

4) x-coordinate: 2.7

5) Distance: d=\sqrt{(4-3)^2+(7-1)^2}

6) 3/8

7) Perimeter: 12.4 units

8) Area: 8 square units

9) Two slopes of triangle ABC are opposite reciprocals

10) Perpendicular line: y-5=-4(x-(-1))

Step-by-step explanation:

1)

The equation of a line is in the form

y=mx+q

where m is the slope and q is the y-intercept.

Two lines are parallel to each other if they have same slope m.

The line given in this problem is

y=-2x+7

So its slope is m=-2. Therefore, the only line parallel to this one is the line which have the same slope, which is:

y=-2x-3

Since it also has m=-2

2)

We can verify that this is a rectangle by checking that the two diagonals are congruent. We have:

- First diagonal: d_1 = \sqrt{(-3-(-1))^2+(4-(-2))^2}=\sqrt{(-2)^2+(6)^2}=6.32

- Second diagonal: d_2 = \sqrt{(1-(-5))^2+(0-2)^2}=\sqrt{6^2+(-2)^2}=6.32

The diagonals are congruent, so this is a rectangle.

3)

Given points A (0,1) and B (-2,5), the slope of the line is:

m=\frac{5-1}{-2-0}=-2

The slope of a line perpendicular to AB is equal to the inverse reciprocal of the slope of AB, so:

m'=\frac{1}{2}

And using the slope-intercept for,

y-y_0 = m(x-x_0)

Using the point (x_0,y_0)=(7,1) we find:

y-1=\frac{1}{2}(x-7)

And re-arranging,

y-1 = \frac{1}{2}x-\frac{7}{2}\\y=\frac{1}{2}x-\frac{5}{2}\\y=0.5x-2.5

4)

The endpoints of the segment are X(1,2) and Y(6,7).

We have to divide the sgment into 1/3 and 2/3 parts from X to Y, so for the x-coordinate we get:

x' = x_0 + \frac{1}{3}(x_1 - x_0) = 1+\frac{1}{3}(6-1)=2.7

5)

The distance between two points A(x_A,y_A) and B(x_B,y_B) is given by

d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

In this problem, the two points are

E(3,1)

F(4,7)

So the distance is given by

d=\sqrt{(4-3)^2+(7-1)^2}

6)

We have:

A(3,4)

B(11,3)

Point C divides the segment into two parts with 3:5 ratio.

The distance between the x-coordinates of A and B is 8 units: this means that the x-coordinate of C falls 3 units to the right of the x-coordinate of A and 5 units to the left of the x-coordinate of B, so overall, the x-coordinate of C falls at

\frac{3}{3+5}=\frac{3}{8}

of the  distance between A and B.

7)

To find the perimeter, we have to calculate the length of each side:

d_{EF}=\sqrt{(x_E-x_F)^2+(y_E-y_F)^2}=\sqrt{(-1-2)^2+(6-4)^2}=3.6

d_{FG}=\sqrt{(x_G-x_F)^2+(y_G-y_F)^2}=\sqrt{(-1-2)^2+(3-4)^2}=3.2

d_{GH}=\sqrt{(x_G-x_H)^2+(y_G-y_H)^2}=\sqrt{(-1-(-3))^2+(3-3)^2}=2

d_{EH}=\sqrt{(x_E-x_H)^2+(y_E-y_H)^2}=\sqrt{(-1-(-3))^2+(6-3)^2}=3.6

So the perimeter is

p = 3.6 + 3.2 + 2 + 3.6 = 12.4

8)

The area of a triangle is

A=\frac{1}{2}(base)(height)

For this triangle,

Base = XW

Height = YZ

We calculate the length of the base and of the height:

Base =XW=\sqrt{(x_X-x_W)^2+(y_X-y_W)^2}=\sqrt{(6-2)^2+(3-(-1))^2}=5.7

Height =YZ=\sqrt{(x_Y-x_Z)^2+(y_Y-y_Z)^2}=\sqrt{(7-5)^2+(0-2)^2}=2.8

So the area is

A=\frac{1}{2}(XW)(YZ)=\frac{1}{2}(5.7)(2.8)=8

9)

A triangle is a right triangle when there is one right angle. This means that two sides of the triangle are perpendicular to each other: however, two lines are perpendicular when their slopes are opposite reciprocals. Therefore, this means that the true statement is

"Two slopes of triangle ABC are opposite reciprocals"

10)

The initial line is

y=\frac{1}{4}x-6

A line perpendicular to this one must have a slope which is the opposite reciprocal, so

m'=-4

Using the slope-intercept form,

y-y_0 = m'(x-x_0)

And using the point

(x_0,y_0)=(-1,5)

we find:

y-5=-4(x-(-1))

Learn more about parallel and perpendicular lines:

brainly.com/question/3414323

brainly.com/question/3569195

#LearnwithBrainly

8 0
3 years ago
Identify the expression with nonnegative limit values. More info on the pic. PLEASE HELP.
marshall27 [118]

Answer:

\lim _{x\to 2}\:\frac{x-2}{x^2-2}\\\\  \lim _{x\to 11}\:\frac{x^2+6x-187}{x^2+3x-154}\\\\ \lim _{x\to \frac{5}{2}}\left\frac{2x^2+x-15}{2x-5}\right

Step-by-step explanation:

a) \lim _{x\to 3}\:\frac{x^2-10x+21}{x^2+4x-21}=\lim \:_{x\to \:3}\:\frac{\left(x-7\right)\left(x-3\right)}{\left(x+7\right)\left(x-3\right)}=\lim \:_{x\to \:3}\:\frac{x-7}{x+7}=\frac{3-7}{3+7}=-\frac{4}{10}=-\frac{2}{5}

b) \lim _{x\to -\frac{3}{2}}\left(\frac{2x^2-5x-12}{2x+3}\right)=\lim \:_{x\to -\frac{3}{2}}\:\frac{\left(2x+3\right)\left(x-4\right)}{\left(2x+3\right)}=\lim \:\:_{x\to \:-\frac{3}{2}}\:\left(x-4\right)=-\frac{3}{2}-4\\ \\ \lim _{x\to -\frac{3}{2}}\left(\frac{2x^2-5x-12}{2x+3}\right)=-\frac{11}{2}

c) \lim _{x\to 2}\:\frac{x-2}{x^2-2}=\frac{2-2}{\left(2\right)^2-2}=\frac{0}{4-2}=0

d) \lim _{x\to 11}\:\frac{x^2+6x-187}{x^2+3x-154}=\lim _{x\to 11}\:\frac{\left(x-11\right)\left(x+17\right)}{\left(x-11\right)\left(x+14\right)}=\lim _{x\to 11}\:\frac{\left(x+17\right)}{\left(x+14\right)}=\frac{11+17}{11+14}=\frac{28}{25}

e) \lim _{x\to 3}\:\frac{x^2-8x+15}{x-3}=\lim \:_{x\to \:3}\:\frac{\left(x-3\right)\left(x-5\right)}{x-3}=\lim _{x\to 3}\left(x-5\right)=3-5=-2

f) \lim _{x\to \frac{5}{2}}\left(\frac{2x^2+x-15}{2x-5}\right)=\lim \:_{x\to \:\frac{5}{2}}\frac{\left(2x-5\right)\left(x+3\right)}{2x-5}=\lim \:\:_{x\to \:\:\frac{5}{2}}\left(x+3\right)=\frac{5}{2}+3=\frac{11}{2}

4 0
3 years ago
Other questions:
  • Jane pulled weeds in the garden 7 times. She was paid $5 each time she pulled weeds a for more than 1 hour. If Jane received $39
    11·2 answers
  • Which expression is equivalent to (-2)(a+6)?
    14·1 answer
  • bill is currently twice as old as John in 10 years their combined age will be 44 how old is Bill now.
    11·1 answer
  • I need help on this question. I don't want to get a bad grade. -_-
    5·1 answer
  • I need it ASAP! Tristan swam around a lake 8 times. The distance around the lake was 0.25 miles. He swam at an average of 60 min
    7·1 answer
  • What is \frac{-y}{6} = \frac{5}{4}[/tex]
    15·1 answer
  • A number line graph is shown:
    8·1 answer
  • 3х + 2y = 14<br> 3х - 2y = 10<br> Solve using elimination pls help me guys
    14·1 answer
  • X times 3+6 when X equals four
    9·2 answers
  • Is this correct? <br><br> Due today
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!