1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
9

What is (-2, -3.5) when it is reflected over the x-axis

Mathematics
1 answer:
zimovet [89]3 years ago
5 0

Answer:

For reflections about the x-axis, the points are reflected from above the x-axis to below the ... In this case, let's pick (-2 ,-3), (-1 ,0), and (0,3).

You might be interested in
Combining like terms
Nadya [2.5K]

wat terms

fvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

3 0
3 years ago
Read 2 more answers
Show that there is no positive integer 'n' for which Vn-1+ Vn+1 is rational
UNO [17]

By contradiction we can prove that there is no positive integer 'n' for which √(n-1) + √(n+1) is rational.

Given: To show that there is no positive integer 'n' for which √(n-1) + √(n+1) rational.

Let us assume that √(n-1) + √(n+1) is a rational number.

So we can describe by some p / q such that

√(n-1) + √(n+1) = p / q , where p and q are some number and q ≠ 0.

                         

Let us rationalize √(n-1) + √(n+1)

Multiplying √(n-1) - √(n+1) in both numerator and denominator in the LHS we get

{√(n-1) + √(n+1)} × {{√(n-1) - √(n+1)} / {√(n-1) - √(n+1)}} = p / q

=> {√(n-1) + √(n+1)}{√(n-1) - √(n+1)} / {√(n-1) - √(n+1)} = p / q

=> {(√(n-1))² - (√(n+1))²} / {√(n-1) - √(n+1)} = p / q

=> {n - 1 - (n + 1)] / {√(n-1) - √(n+1)} = p / q

=> {n - 1 - n - 1} / {√(n-1) - √(n+1)} = p / q

=> -2 / {√(n-1) - √(n+1)} = p / q

Multiplying {√(n-1) - √(n+1)} × q / p on both sides we get:

{-2 / {√(n-1) - √(n+1)}} × {√(n-1) - √(n+1)} × q / p = p / q × {√(n-1) - √(n+1)} × q / p

-2q / p = {√(n-1) - √(n+1)}

So {√(n-1) - √(n+1)} = -2q / p

Therefore, √(n-1) + √(n+1) = p / q                  [equation 1]

√(n-1) - √(n+1) = -2q / p                                 [equation 2]

Adding equation 1 and equation 2, we get:

{√(n-1) + √(n+1)} + {√(n-1) - √(n+1)} = p / q -2q / p

=> 2√(n-1) = (p² - 2q²) / pq

squaring both sides

{2√(n-1)}² = {(p² - 2q²) / pq}²

4(n - 1)  = (p² - 2q²)² / p²q²

Multiplying 1 / 4 on both sides

1 / 4 × 4(n - 1)  = (p² - 2q²)² / p²q² × 1 / 4

(n - 1) =  (p² - 2q²)² / 4p²q²

Adding 1 on both sides:

(n - 1) + 1 =  (p² - 2q²)² / 4p²q² + 1

n = (p² - 2q²)² / 4p²q² + 1

= ((p⁴ - 4p²q² + 4q⁴) + 4p²q²) / 4p²q²

= (p⁴ + 4q⁴) / 4p²q²

n = (p⁴ + 4q⁴) / 4p²q², which is rational  

Subtracting equation 1 and equation 2, we get:

{√(n-1) + √(n+1)} - {√(n-1) - √(n+1)} = p / q - (-2q / p)

=>√(n-1) + √(n+1) - √(n-1) + √(n+1) = p / q - (-2q / p)

=>2√(n+1) = (p² + 2q²) / pq

squaring both sides, we get:

{2√(n+1)}² = {(p² + 2q²) / pq}²

4(n + 1) = (p² + 2q²)² / p²q²

Multiplying 1 / 4 on both sides

1 / 4 × 4(n + 1)  = (p² + 2q²)² / p²q² × 1 / 4

(n + 1) =  (p² + 2q²)² / 4p²q²

Adding (-1) on both sides

(n + 1) - 1 =  (p² + 2q²)² / 4p²q² - 1

n = (p² + 2q²)² / 4p²q² - 1

= (p⁴ + 4p²q² + 4q⁴ - 4p²q²) / 4p²q²

= (p⁴ + 4q⁴) / 4p²q²

n =  (p⁴ + 4q⁴) / 4p²q², which is rational.

But n is rational when we assume √(n-1) + √(n+1) is rational.

So, if √(n-1) + √(n+1) is not rational, n is also not rational. This contradicts the fact that n is rational.

Therefore, our assumption √(n-1) + √(n+1) is rational is wrong and there exists no positive n for which √(n-1) + √(n+1) is rational.

Hence by contradiction we can prove that there is no positive integer 'n' for which √(n-1) + √(n+1) is rational.

Know more about "irrational numbers" here: brainly.com/question/17450097

#SPJ9

6 0
2 years ago
find the cordinates of the midpoint of a segment with the given endpoints. endpoint J (-4,2) F (5,-2)
FromTheMoon [43]
Answer (0.5, 0).......
6 0
4 years ago
What is the length of Line segment A C? 3 ft 4 ft 9 ft 18 ft
AfilCa [17]

Answer:

By the given diagram,

AM = MB and CN = NB

M and N are the mid points of the sides AB and CB respectively,

Thus, by the mid point theorem,

MN ║ AC,

By the alternative interior angle theorem,

∠BMN ≅ ∠BAC

∠BNM ≅ ∠BCA

Thus, by AA similarity postulate,

ΔBMN ≅ ΔBAC

By the property of similar triangles,

Thus, The length of AC is 18 ft.

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
If Dave and Bob for £40 in the ratio of 1:7 much does Dave get
Zarrin [17]
Answer:
Dave gets £5

Explanation:
1 + 7 = 8
40 / 8 = 5
1 x 5 = 5
7 x 5 = 35
7 0
3 years ago
Other questions:
  • 10 points for 2 questions and i get one wrong whats my percentage??
    13·2 answers
  • Jose reads 45 pages of his novel in a 3 hours. At that rate, how many pages would he read in 5 hours
    9·2 answers
  • PLEASE HELP TIMED
    15·1 answer
  • I buy a used car for
    10·1 answer
  • HELP I NEED THIS ASAP PLEASE AND THANK YOU!!!!! (4)
    13·1 answer
  • Mira ran 14.4 kilometers. One mile is equal to 1.6 kilometers. Which measurement is closest to the number of miles Mira ran?
    5·2 answers
  • Help please asap just the answers​
    6·2 answers
  • Chapter 2
    7·1 answer
  • Pls help I am falling
    11·1 answer
  • Simplify the expression.<br> I NEED HELP PLEASE!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!