For this case we must simplify the following expression:
![\sqrt [3] {64 * a ^ 6 * b ^ 7 * c ^ 9}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B64%20%2A%20a%20%5E%206%20%2A%20b%20%5E%207%20%2A%20c%20%5E%209%7D)
We rewrite:

So:
![\sqrt [3] {4 ^ 3 * (a ^ 2) ^ 3 * (b ^ 2) ^ 3 * b * (c ^ 3) ^ 3} =\\\sqrt [3] {4 * a ^ 2 * b ^ 2 * c ^ 3) ^ 3 * b} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B4%20%5E%203%20%2A%20%28a%20%5E%202%29%20%5E%203%20%2A%20%28b%20%5E%202%29%20%5E%203%20%2A%20b%20%2A%20%28c%20%5E%203%29%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B3%5D%20%7B4%20%2A%20a%20%5E%202%20%2A%20b%20%5E%202%20%2A%20c%20%5E%203%29%20%5E%203%20%2A%20b%7D%20%3D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
So:
![4a ^ 2b ^ 2 c ^ 3 \sqrt [3] {b}](https://tex.z-dn.net/?f=4a%20%5E%202b%20%5E%202%20c%20%5E%203%20%5Csqrt%20%5B3%5D%20%7Bb%7D)
Answer:
Option B
Given:
let h be the high quality bean
let c be the cheaper bean
h + c = 160
6h + 3.25c = 160*4.97
6h + 3.25c = 795.20
h = 160 - c
6(160 - c) + 3.25c = 795.20
960 - 6c + 3.25c = 795.20
-2.75c = 795.20 - 960
-2.75c = -164.80
c = -164.80 / -2.75
c = 59.92 or 60 lbs
h = 160 - c
h = 160 - 60
h = 100 lbs
Sarah should blend 60 lbs of cheap coffee bean and 100 lbs of high quality coffee bean.
The solution will be where the graph crosses the x-axis.
When a graph crosses the x-axis, the value of the function is 0. Just look at your graph and look at the x-values where the graph crosses the x-axis.
Answer:
£18
Step-by-step explanation:
Let
x = original price of the game
Increase in price = 1/2
New price = £27
x + 1/2x = £27
2x+x/2 = 27
3/2x = 27
x = 27 ÷ 3/2
= 27 × 2/3
= 54 / 3
x = £18
Therefore, the original price of the game is £18
Step-by-step explanation:
Range of relation ={-3,0,3,5}