1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
15

A christmas gift to you to earn some points

Mathematics
1 answer:
Katyanochek1 [597]3 years ago
6 0

Answer:

2229 thanks, merry early Christmas

You might be interested in
-2(3 + 4x)<br><br>I need help​
11Alexandr11 [23.1K]

Answer:

-6-8x

Step-by-step explanation:

distribute and multiply

4 0
3 years ago
Read 2 more answers
Rewrite this equation<br> 2x + 3y = 6 slope <br> intercept form
Eduardwww [97]
You have -3y=-2x+6 divide both sides by -3 and you'll get:<span><span><span>−3y</span><span>−3</span></span>=<span><span>−2x</span><span>−3</span></span>−<span>63
</span></span>its y=2/3x-2

6 0
3 years ago
Read 2 more answers
What is the total volume of this compound shape?
Alex787 [66]

Answer:

This is very easy. First find the volume of the cube, and then add it to the volume of the hemisphere to find the total volume.

The volume of the cube is length x width x height: 8 x 8 x 12 = 768 cm

The volume of the hemisphere is (2/3)πr³ : (2/3)π(4)³ = 134.04 cm

*Radius is 4

Now add: 768 + 134.04 = 902.04 cm

6 0
3 years ago
d) The front of the stage, side C, is 50 feet long. A 40-foot rope runs along the side of square B. A 30-foot rope runs along th
34kurt
Yes, this is a right triangle!

The ratio is identifiable as a 3:4:5 triangle, one of the ratios to tell if a triangle is a right triangle
4 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Other questions:
  • What is the domain function?
    8·2 answers
  • You really want to earn an a in a class, but you still need to take one more test. suppose that your previous test scores are 85
    12·1 answer
  • Which is the graph of 3x – 2y = 6? A coordinate plane with a line passing through (negative 2, 0) and (0, 3). A coordinate plane
    15·2 answers
  • Evaluate 13 + 6/y when y = 6
    6·2 answers
  • Find a possible value of b. 5x2 - bx - 8​
    9·1 answer
  • What is the probability of tossing a penny and landing on heads 3 times in a row
    14·1 answer
  • Can someone help me??
    12·1 answer
  • Are the two triangles similar?
    7·2 answers
  • 9 (9m+3t)=<br> simplify pls
    8·2 answers
  • To calculate 587 ÷ 1,000, how many decimal points to the left should the decimal in 587 move?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!