Answer:
1,099.88
Step-by-step explanation:
Just add everything to get that.
 
        
             
        
        
        
Answer:
- 273 mL of 5%
- 117 mL of 15%
Step-by-step explanation:
Let q represent the quantity of 15% dressing used. Then the amount of 5% dressing is (390 -q). The amount of vinegar in the mix is ...
   0.15q + 0.05(390 -q) = 0.08(390)
   0.10q = 31.2 -19.5 = 11.7 . . . . . . subtract 0.05(390) and simplify
   q = 117 . . . . . . . . . . . . . . . . . . multiply by 10
   390-q = 273
The chef should use 273 mL of the first brand (5% vinegar) and 117 mL of the second brand (15% vinegar).
__
<em>Additional comment</em>
You may have noticed that the value of q is (0.08 -0.05)/(0.10 -0.05)×390. The fraction of the mix that is the highest contributor is the ratio of the difference between the mix value and least contributor, divided by the difference between the contributors: (8-5)/(15-5) = 3/10, the fraction that is 15% vinegar. This is the generic solution to mixture problems.
 
        
             
        
        
        
Answer:
You are given:
4Fe+3O_2 -> 2Fe_2O_3
4:Fe:4
6:O_2:6
You actually have the same number of Fe on both sides, The same is true for O_2 so yes this equation is properly balanced.
For added benefit consider the following equation:
CH_4+O_2-> CO_2+2H_2O
ASK: Is this equation balanced? Quick answer: No
ASK: So how do we know and how do we then balance it?
DO: Count the number of each atom type you have on each side of the equation:
1:C:1
4:H:4
2:O:4
As you can see everything is balanced except for O To balance O we can simply add a coefficient of 2 in front of O_2 on the left side which would result in 4 O atoms:
CH_4+color(red)(2)O_2-> CO_2+2H_2O
1:C:1
4:H:4
4:O:4
Everything is now balanced.
Step-by-step explanation:
 
        
             
        
        
        
Answer:
m=4 is the correct answer
 
        
                    
             
        
        
        
Answer:
b is the answer by solomon