Answer:
The change to the face 3 affects the value of P(Odd Number)
Step-by-step explanation:
Analysing the question one statement at a time.
Before the face with 3 is loaded to be twice likely to come up.
The sample space is:

And the probability of each is:








P(Odd Number) is then calculated as:


Take LCM



After the face with 3 is loaded to be twice likely to come up.
The sample space becomes:

The probability of each is:








Take LCM


Comparing P(Odd Number) before and after
--- Before
--- After
<em>We can conclude that the change to the face 3 affects the value of P(Odd Number)</em>
Answer:
y = 0
Step-by-step explanation:
It is always a good idea to look at the question and make some observations about it. Here, you might observe ...
- all of the bases are powers of 3: 243 = 3^5; 9 = 3^2
- y is a factor of every exponent
The latter observation is important, because it means that when y=0, every exponential expression has a value of 1. Hence y = 0 is a solution.
__
To solve the equation, you can write it in terms of powers of 3.
(3^5)^(-y) = (3^-5)^(3y)·(3^2)^(-2y)
3^(-5y) = 3^(-15y)·3^(-4y)
3^(-5y) = 3^(-19y)
-5y = -19y . . . . . . . . equating exponents; equivalent to taking log base 3
14y = 0 . . . . . . . . . . add 19y
y = 0 . . . . . . . . . . . one solution
______
The rules of exponents we used are ...
(a^b)(a^c) = a^(b+c)
(a^b)^c = a^(bc)
1/a^b = a^-b
Answer:
Both are negative
Step-by-step explanation:
If multiplying= It will always be negative
If dividing= It will also always be negative
Answer:
12 possibilities
Step-by-step explanation:
In the first urn, we have 4 balls, and all of them are different, as they have different labels, so the group of two red balls r1 and r2 is different from the group of red balls r2 and r3.
The same thing occurs in the second urn, as all balls have different labels.
The problem is a combination problem (the group r1 and r2 is the same group r2 and r1).
For the first urn, we have a combination of 4 choose 2:
C(4,2) = 4!/2!*2! = 4*3*2/2*2 = 2*3 = 6 possibilities
For the second urn, we also have a combination of 4 choose 2, so 6 possibilities.
In total we have 6 + 6 = 12 possibilities.
Answer:
7 weeks
Step-by-step explanation:
500-200=300. 300 divided by 40 is 7.5 so 7 weeks