A. x∧2+(x+20∧2=150∧2 is correct.
because you need to plug the numbers into the pathagoreum theorum which is
a∧2+b∧2=c∧2
150 is our c because it is the side right accross from the right angle.
which number is a and which number is b does not matter.
x is the distance north so we can assign that to a and the distace east is north plus 20 so we can assign b to x+20.
Answer:
b
Step-by-step explanation:
to prove if NP is tangent to MN
we could prove if NPM is a right triangle
By pythagorean theorem
a^2+b^2=c^2
where a=MN=33
b=NP=180
c=MP=MQ+QP=152+33=185
so
33^2+180^2=185^2
but
1089+32400 is not equal to 34225
33489 is different from 34225
3(x)+3=36
-3 -3
3(x)=33
3 3
x=11