Consider an angle M with measure m≠90°, in a right triangle.
Let
OPP denote the length of the side opposite to M,
ADJ denote the length of the side adjacent to M, and
HYP denote the hypotenuse.
then:
Sin(M) = OPP/HYP
Cos(M)= ADJ/HYPP
Tan(M)=OPP/ADJ
Back to our problem,
using the Pythagorean we can find the length of AB:






Answer: 1, 3, 4
Answer:
its really hard to see but the answer is on the photo
Step-by-step explanation:
the photo has the step by step its just hard to see
Answer:
no. i mean if u wanna take my points ok thats fine but dont be upset when i take ur points
Step-by-step explanation:
Bc randy worked it out and that’s what he got
1
Add the numbers
(
−
4
+
5
)
−
(
6
+
7
)
=
0
({\color{#c92786}{-4}}+{\color{#c92786}{5}})-(6+7)=xx^{0}
(−4+5)−(6+7)=xx0
(
1
)
−
(
6
+
7
)
=
0
({\color{#c92786}{1}})-(6+7)=xx^{0}
(1)−(6+7)=xx0
2
Add the numbers
1
−
(
6
+
7
)
=
0
1-({\color{#c92786}{6}}+{\color{#c92786}{7}})=xx^{0}
1−(6+7)=xx0
1
−
(
1
3
)
=
0
1-({\color{#c92786}{13}})=xx^{0}
1−(13)=xx0
3
Multiply the numbers
1
−
1
⋅
1
3
=
0
1{\color{#c92786}{-1}} \cdot {\color{#c92786}{13}}=xx^{0}
1−1⋅13=xx0
1
−
1
3
=
0
1{\color{#c92786}{-13}}=xx^{0}
1−13=xx0
4
Subtract the numbers
1
−
1
3
=
0
{\color{#c92786}{1-13}}=xx^{0}
1−13=xx0
−
1
2
=
0
{\color{#c92786}{-12}}=xx^{0}
−12=xx0
5
Combine exponents
−
1
2
=
0
-12={\color{#c92786}{xx^{0}}}
−12=xx0
−
1
2
=
1
-12={\color{#c92786}{x^{1}}}
−12=x1
Show less
Solution
−
1
2
=
1