1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alex41 [277]
3 years ago
9

The value of y varies directly with x. If x=4, then y=10. a. Find the constant of proportionality. b. Write an equation to repre

sent the situation.
Mathematics
1 answer:
Lynna [10]3 years ago
3 0

Answer:

aaaa

Step-by-step explanation:

In a short paragraph, describe how you would determine the amount of work needed to pull a toboggan the length of a football field. Be sure to include the equipment list and describe the measurements that you will take.

You might be interested in
Compare these amounts . use or = 1lb_____ 6oz
Anarel [89]

Answer:

1lb > 6oz

Step-by-step explanation:

7 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
If LK=MK, LK=7x-10,KN=x+3, MN=9x-11 and KJ=28 find LJ
beks73 [17]
Suppose J, K, L, M, N are points on the same line.

MK = MN + (-KN) = MN - KN = 9x - 11 - x - 3 = 8x - 14

Since LK = MK and LK = 7x - 10, then

7x - 10 = 8x - 14

8x - 7x = -10 + 14

x = 4

LJ = MK + KJ

MK = LK = 7x - 10 = 7(4) - 10 = 28 - 10 = 18

LJ = 18 + 28 = 46
3 0
3 years ago
Use a net to find the surface area of the cylinder use 3.14 for pi
telo118 [61]

Answer:

3.14

Step-by-step explanation:

7 0
3 years ago
The measures of dispersion is always​
olya-2409 [2.1K]

Answer:

always a positive number because it represents a distance from the mean.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following statements is false?
    11·2 answers
  • Express the sum radical -25+ 2radical-9 as a monomial in term of i
    6·2 answers
  • A ship is 2.8 degree off course .If the ship is traveling at 14.0 miles per hour,how far off course will it be after 2 hours?
    10·1 answer
  • Finding the sum of the measures of the interior angles of a convex nonagon
    10·1 answer
  • How Many Times does 25 go into 56???
    11·2 answers
  • What does the x equal
    5·2 answers
  • Segment addition postulate help
    6·1 answer
  • 4(t - 1)^2 for t = 7
    5·1 answer
  • Given the equation: x^2+6x+8=0
    11·1 answer
  • Help ASAP (find the area)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!