Answer:
8.7 cm
Step-by-step explanation:
The question is a 2-two-step Pythagoras theorem. (c^2 = a^2 + b^2)
Consider as such, If I were to draw a diagonal line along the base of the cube what is the length of the diagonal line. To find out that we use the theorem. We can substitute a for 5 and b for 5 as well. So
a^2 +b^2 = c^2
5^2 + 5^2 = c^2
25 + 25 = c^2
√50 = c
Then since the line side of the cube is on a 3d angle we need to do the same process again but now using the imaginary diagonal line that we just calculated and the height (5).
a^2 +b^2 = c^2
√50^2 + 5^2 = c^2
50 + 25 = c^2
√75 = c
c = 8.6602...
<em>when rounded to 1 d.p.</em>
c = 8.7
Line AB is 8.7 cm long.
Answer: the cost of one chicken is $8
The cost of one duck is $5
Step-by-step explanation:
Let x represent the cost of one chicken.
Let y represent the cost of one duck.
Last month, he sold 50 chickens and 30 ducks for $550. It means that
50x + 30y = 550- - - - - - - - - - - 1
This month, he sold 44 chickens and 36 ducks for $532. It means that
44x + 36y = 532- - - - - - - - - - - 2
Multiplying equation 1 by 44 and equation 2 by 50, it becomes
2200x + 1320y = 24200
2200x + 1800y = 26600
Subtracting, it becomes
- 480y = - 2400
y = - 2400/- 480
y = 5
Substituting y = 5 Intl equation 1, it becomes
50x + 30 × 5 = 550
50x + 150 = 550
50x = 550 - 150
50x = 400
x = 400/50
x = 8
ANSWER
x = ±1 and y = -4.
Either x = +1 or x = -1 will work
EXPLANATION
If -3 + ix²y and x² + y + 4i are complex conjugates, then one of them can be written in the form a + bi and the other in the form a - bi. In other words, between conjugates, the imaginary parts are same in absolute value but different in sign (b and -b). The real parts are the same
For -3 + ix²y
⇒ real part: -3
⇒ imaginary part: x²y
For x² + y + 4i
⇒ real part: x² + y (since x, y are real numbers)
⇒ imaginary part: 4
Therefore, for the two expressions to be conjugates, we must satisfy the two conditions.
Condition 1: Imaginary parts are same in absolute value but different in sign. We can set the imaginary part of -3 + ix²y to be the negative imaginary part of x² + y + 4i so that the
x²y = -4 ... (I)
Condition 2: Real parts are the same
x² + y = -3 ... (II)
We have a system of equations since both conditions must be satisfied
x²y = -4 ... (I)
x² + y = -3 ... (II)
We can rearrange equation (II) so that we have
y = -3 - x² ... (II)
Substituting into equation (I)
x²y = -4 ... (I)
x²(-3 - x²) = -4
-3x² - x⁴ = -4
x⁴ + 3x² - 4 = 0
(x² + 4)(x² - 1) = 0
(x² + 4)(x-1)(x+1) = 0
Therefore, x = ±1.
Leave alone (x² + 4) as it gives no real solutions.
Solve for y:
y = -3 - x² ... (II)
y = -3 - (±1)²
y = -3 - 1
y = -4
So x = ±1 and y = -4. We can confirm this results in conjugates by substituting into the expressions:
-3 + ix²y
= -3 + i(±1)²(-4)
= -3 - 4i
x² + y + 4i
= (±1)² - 4 + 4i
= 1 - 4 + 4i
= -3 + 4i
They result in conjugates
Answer:
240 square inches
Step-by-step explanation:
1 foot = 12 inches
to convert 4/3 ft to inches, multiply by 12
4/3 × 12 = 16 inches
the area of a square = base × height
base = 16, height = 15
16 × 15 = 240 square inches
Answer: A. Women began to work outside the home
Step-by-step explanation: