Answer:
i dont know what it means but the right image is 4 times larger than the left image
Step-by-step explanation:
Answer:
The height of the seat at point B above the ground is approximately 218.5 feet
Step-by-step explanation:
The given parameters are;
The radius of the Ferris wheel, r = 125 feet
The angle between each seat, θ = 36°
The height of the Ferris wheel above the ground = 20 feet
Therefore, we have;
The height of the midline, D = The height of the Ferris wheel above the ground + The radius of the Ferris wheel
∴ The height of the midline = 20 feet + 125 feet = 145 feet
The height of the seat at point B above the ground, h = r × sin(θ) + D
By substitution, we have;
h = 125 × sin(36°) + 145 ≈ 218.5 (The answer is rounded to the nearest tenth)
The height of the seat at point B above the ground, h ≈ 218.5 feet.
Answer:
Divide the 1st equation by 2
a + 2c = 19
Divide the 2nd equation by 3
a + c = 13.5
Subtract the 1st equation and the 2nd equation
c = 5.5
Substituting back into the 2nd equation will give:
a + 5.5 = 13.5
a = 8
Step-by-step explanation:
Answer:
The value of the constant C is 0.01 .
Step-by-step explanation:
Given:
Suppose X, Y, and Z are random variables with the joint density function,

The value of constant C can be obtained as:



![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1z%7D%20%7D%7B0.1%7D%20%5D%5Climits%5E%5Cinfty__0%20%7D%29%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ]) } \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1%28%5Cinfty%29%7D%20%7D%7B0.1%7D%2B%5Cfrac%7Be%5E%7B-0.1%280%29%7D%20%7D%7B0.1%7D%20%5D%29%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}] } \, dy }) \, dx =1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%5B0%2B%5Cfrac%7B1%7D%7B0.1%7D%5D%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D1)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0 }) \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2y%7D%20%7D%7B0.2%7D%5D%5E%5Cinfty__0%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2%28%5Cinfty%29%7D%20%7D%7B0.2%7D%2B%5Cfrac%7Be%5E%7B-0.2%280%29%7D%20%7D%7B0.2%7D%5D%20%20%20%7D%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%5B0%2B%5Cfrac%7B1%7D%7B0.2%7D%5D%20%20%7D%20%5C%2C%20dx%20%3D%201)
![50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1](https://tex.z-dn.net/?f=50C%28%5B%5Cfrac%7B-e%5E%7B-0.5x%7D%20%7D%7B0.5%7D%5D%5E%5Cinfty__0%7D%29%20%3D%201)
![50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1](https://tex.z-dn.net/?f=50C%5B%5Cfrac%7B-e%5E%7B-0.5%28%5Cinfty%29%7D%20%7D%7B0.5%7D%20%2B%20%5Cfrac%7B-0.5%280%29%7D%7B0.5%7D%5D%20%3D1)
![50C[0+\frac{1}{0.5} ] =1](https://tex.z-dn.net/?f=50C%5B0%2B%5Cfrac%7B1%7D%7B0.5%7D%20%5D%20%3D1)
⇒ 
C = 0.01
The reciprocal of a number is the opposite of any known/unknown number
-x
four subtracted from this
-x-4