Find the least common denominator or LCM of the two denominators. LCM of 4 and 15 is 60. 4x15= 60 34=3x154x15=4560 3/4 is bigger
Answer is C
Because 2 is your Y intercept and -1/2 means your going to move down 1 then move 2 to the right
Range is set of all y-values. To find a range of graphed function, we need to know that range starts from the minimum value of graph to maximum value. That's because the minimum value is the least value that you can get by substituting the domain and the maximum value is the largest value that you can get by substituting the domain as well.
Now we don't talk about domain here, we talk about range. See the attachment! You are supposed to focus on y-axis, plane or vertical line. See how the minimum value of function is the negative value while the maximum value is positive.
That means any ranges that don't contain the negative values are cleared out. (Hence A and C choices are wrong.)
Next, range being set of all real numbers mean that graphed functions don't have maximum value or minimum value (We can say that both max and min are infinite.)
Take a look at line graph as an example of range being set of all real numbers, or cubic function.
Answer/Conclusion
- The range exists from negative value which is -9 to the maximum value which is 5.
- That means the range is -9<=y<=5
A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>
En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)
En consecuencia, obtenemos las siguientes proporciones:
AP'/AP'' = MN/BC = 1/2 (1)
Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:


A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
Para aprender sobre triángulos semejantes: brainly.com/question/21730013
#SPJ1
Answer: i think your missing the other part of the question
Step-by-step explanation: