The most carbon is located in Earth's atmosphere.
Answer:
C3 plants would have faster growth rates; C4 plants would be minimally affected.
Explanation:
C3 and C4 pathways are the variations of dark reactions of photosynthesis present in green plants. The photosynthetic efficiency of C3 plants is reduced due to the affinity of RuBisCo enzyme for oxygen which in turn leads to the futile pathway of photorespiration. RuBisCo enzyme catalyzes the rate-limiting reaction of the C3 pathway. On the other hand, the C4 plants concentrate CO2 around RuBisCo in their bundle sheath cells of leaves to minimize photorespiration and exhibit higher rates of photosynthesis.
Increased levels of atmospheric CO2 would reduce the photorespiration in C3 plants and would allow them to fix CO2 efficiently due to the increased concentration of CO2 around the enzyme RuBisCo. The increased photosynthetic efficiency would help these plants to exhibit faster growth rates.
However, the photosynthetic rate of C4 plants is not limited by CO2 concentration as they themselves reduce photorespiration by spatial separation of primary carboxylation in mesophyll cell and CO2 fixation in bundle sheath cells. Hence, increased CO2 levels in the atmosphere would not have any impact on their photosynthetic rate and growth.
<span>It replaces damaged cells
</span><span>
There are at least three primary functions that are performed by the epithelial tissue.Firstly it provides a great protective covering for all the tissues lying beneath it from radiation, toxins, physical trauma, desiccation and invasion of pathogens. Secondly it helps to regulate the exchange of chemicals between the body cavity and the tissues that lie underneath the epithelial tissues. It also helps in the secretion of the hormones in to the bloods. These are all major but primary functions of the epithelial tissues. From this we can easily understand the importance of the epithelial tissues.</span>
Answer: D, They need to think of ways to solve problems.
Explanation:
Cellulose <span>is a chemical compound that forms tangled fibers in the cell walls of plants. Cellulose is a chemical compound made out of sugar and if found in the cell walls of plants.</span>