1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
3 years ago
10

The image is located at the bottom of the screen.

Mathematics
1 answer:
Setler79 [48]3 years ago
7 0

Answer:

..... surface area = 16 km^2.

You might be interested in
Is this right
pychu [463]

Answer:

360 = x+123+ 90

x = 147

Step-by-step explanation:

The three angles form a circle which is 360 degrees

360 = x+123+ 90

Subtract 123 and 90 from each side

360 -123 - 90 = x

147 = x

6 0
3 years ago
Read 2 more answers
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
If EF = 2x+13, FG = 20, and EG = 71 what's the value of x​
klemol [59]

Answer:

<h2>x = 19</h2><h2></h2>

Step-by-step explanation:

|<----------------- 71 ----------------------->|

E-----------------------F---------------------G

       2x + 13                 20

find: x

EF + FG = DG

2x + 13 + 20 = 71

2x = 71 - 20 - 13

x = 38 / 2

x = 19

6 0
3 years ago
The circumference of the base of a cone is 24 inches. The slant height of the cone is 20 inches. What is the surface area of the
nignag [31]

Answer:

Step-by-step explanation:

Given data:

Circumference of the base of the cone = 24in.

Recall that circumference (in this case) is the distance round the base of the cone and from here the diameter D=12in. Radius = 6in

Surface area l = pie x radius ( slant height + radius)

= 3.142 x 6 (20 + 6)

= 3.142 x 6 (26)

= 3.142 x 156

= 490.152in^2

7 0
3 years ago
Tell whether the given number is a solution of each question. ( Must show work for credit)
guajiro [1.7K]

Answer/Step-by-step explanation:

1. 9 = 2a + 3 ; 3

Let's solve for a.

9 - 3 = 2a (subtraction property of equality)

6 = 2a

\frac{6}{2} = a (division property of equality)

3 = a

a = 3

Therefore, 3 is a solution to 9 = 2a + 3

2. 5n - (-30) = 5 ; 7

5n + 30 = 5 (- × - = +)

5n = 5 - 30 (Subtraction property of equality)

5n = -25

\frac{5n}{5} = \frac{-25}{5} (division property of equality)

n = -5

Therefore, 7 is not a solution of 5n - (-30) = 5

3. 4.4r - 2.8 = 1.6 ; 1

4.4r = 1.6 + 2.8

4.4r = 4.4

\frac{4.4r}{4.4} = \frac{4.4}{4.4}

r = 1

Therefore, 1 is a solution of 4.4r - 2.8 = 1.6.

5 0
3 years ago
Other questions:
  • Can you estimate 7533
    13·1 answer
  • Solve the equation.<br> 6 - x - x = 18
    10·2 answers
  • A ratio is?
    12·1 answer
  • 8/9= blank=3/11=blank<br> find an equivlant fraction
    8·1 answer
  • Find the measurements of this arc
    15·1 answer
  • Help and pls explain
    13·1 answer
  • Find the measures of &lt;1 and &lt;2 if &lt;3 = 78^0 and &lt;4 = 102^0.
    14·2 answers
  • QueSLUIT Consider the universal set U of all the integers from 2 to 20, including both 2 and 20. Let B be the set of multiples o
    7·1 answer
  • D.
    12·1 answer
  • 3/8 to percentage pls answer​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!