Answer:
Ok, the domain is the set of values that we can input in a function.
In this case, we have:
y = Ix - 6I + 3.
Notice that there is no restriction here, x can actually take any value, then the domain will be the set of all real numbers.
The correct domain is x, x ∈ R
Now, if we had (for example) something like:
y = Ix - 6I < 3
Now we have a restriction in the domain because we can not have y equal or larger than 3.
To find the domain, we can break the absolute value:
Ix - 6I < 3
is equivalent to:
-3 < x - 6 < 3
now let's add 6 in each side.
-3 + 6 < x - 6 + 6 < 3 + 6
3 < x < 9
That will be the domain in that case.
Answer:
function g is positive over (-∞, ∞)
function g has a y-intercept of (0,4)
function g decreasing over the interval (-∞, 0)
Step-by-step explanation:
Answer: 2x-6
Work Shown:
john = x
sam = x-3 since he scored 3 fewer than john
rob = 2*(sam) = 2(x-3) = 2*x-2*3 = 2x-6
Hi there!
To solve this problem, we need to multiply each number by 4 ft.
8×4=32
5×4=20
Now, we films the area.
32×20 = 640
The area of the room is 640 feet squared.
Hope this helps!
The probability of type II error will decrease if the level of significance of a hypothesis test is raised from 0.005 to 0.2.
<h3 /><h3>What is a type II error?</h3>
A type II error occurs when a false null hypothesis is not rejected or a true alternative hypothesis is mistakenly rejected.
It is denoted by 'β'. The power of the hypothesis is given by '1 - β'.
<h3>How the type II error is related to the significance level?</h3>
The relation between type II error and the significance level(α):
- The higher values of significance level make it easier to reject the null hypothesis. So, the probability of type II error decreases.
- The lower values of significance level make it fail to reject a false null hypothesis. So, the probability of type II error increases.
- Thus, if the significance level increases, the type II error decreases and vice-versa.
From this, it is known that when the significance level of the given hypothesis test is raised from 0.005 to 0.2, the probability of type II error will decrease.
Learn more about type II error of a hypothesis test here:
brainly.com/question/15221256
#SPJ4