1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
3 years ago
6

PLEASE HELP ASAP!!!!!!

Mathematics
1 answer:
Anit [1.1K]3 years ago
5 0

Answer:

answer is c

Step-by-step explanation:

You might be interested in
Help with this question please ​
riadik2000 [5.3K]
It is : D

Hope this helps
3 0
2 years ago
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of
tresset_1 [31]

Because I've gone ahead with trying to parameterize S directly and learned the hard way that the resulting integral is large and annoying to work with, I'll propose a less direct approach.

Rather than compute the surface integral over S straight away, let's close off the hemisphere with the disk D of radius 9 centered at the origin and coincident with the plane y=0. Then by the divergence theorem, since the region S\cup D is closed, we have

\displaystyle\iint_{S\cup D}\vec F\cdot\mathrm d\vec S=\iiint_R(\nabla\cdot\vec F)\,\mathrm dV

where R is the interior of S\cup D. \vec F has divergence

\nabla\cdot\vec F(x,y,z)=\dfrac{\partial(xz)}{\partial x}+\dfrac{\partial(x)}{\partial y}+\dfrac{\partial(y)}{\partial z}=z

so the flux over the closed region is

\displaystyle\iiint_Rz\,\mathrm dV=\int_0^\pi\int_0^\pi\int_0^9\rho^3\cos\varphi\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=0

The total flux over the closed surface is equal to the flux over its component surfaces, so we have

\displaystyle\iint_{S\cup D}\vec F\cdot\mathrm d\vec S=\iint_S\vec F\cdot\mathrm d\vec S+\iint_D\vec F\cdot\mathrm d\vec S=0

\implies\boxed{\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=-\iint_D\vec F\cdot\mathrm d\vec S}

Parameterize D by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec k

with 0\le u\le9 and 0\le v\le2\pi. Take the normal vector to D to be

\vec s_u\times\vec s_v=-u\,\vec\jmath

Then the flux of \vec F across S is

\displaystyle\iint_D\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^9\vec F(x(u,v),y(u,v),z(u,v))\cdot(\vec s_u\times\vec s_v)\,\mathrm du\,\mathrm dv

=\displaystyle\int_0^{2\pi}\int_0^9(u^2\cos v\sin v\,\vec\imath+u\cos v\,\vec\jmath)\cdot(-u\,\vec\jmath)\,\mathrm du\,\mathrm dv

=\displaystyle-\int_0^{2\pi}\int_0^9u^2\cos v\,\mathrm du\,\mathrm dv=0

\implies\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\boxed{0}

8 0
3 years ago
What is the ratio between 80 and 56
madreJ [45]
Just Reach this number to its simplest form
as=80/56
=10/7
SIMPLEST FORM=10/7
RATIO=10:7
8 0
3 years ago
6 times what is 42? I will give twenty points to the first person to answer!
Shkiper50 [21]

Answer:

6 \times 7 = 42

4 0
2 years ago
How do you find the surface area square pyramid if you know thank you i am in 6th grade please help
Andreyy89

Answer:

Simple

Step-by-step explanation:

find the area of the square and all the other triangles ex:

Surface Area Formulas

In general, the surface area is the sum of all the areas of all the shapes that cover the surface of the object.

Cube | Rectangular Prism | Prism | Sphere | Cylinder | Units

Note: "ab" means "a" multiplied by "b". "a2" means "a squared", which is the same as "a" times "a".

Be careful!! Units count. Use the same units for all measurements. Examples

Surface Area of a Cube = 6 a 2

(a is the length of the side of each edge of the cube)

In words, the surface area of a cube is the area of the six squares that cover it. The area of one of them is a*a, or a 2 . Since these are all the same, you can multiply one of them by six, so the surface area of a cube is 6 times one of the sides squared.

Surface Area of a Rectangular Prism = 2ab + 2bc + 2ac

(a, b, and c are the lengths of the 3 sides)

In words, the surface area of a rectangular prism is the area of the six rectangles that cover it. But we don't have to figure out all six because we know that the top and bottom are the same, the front and back are the same, and the left and right sides are the same.

The area of the top and bottom (side lengths a and c) = a*c. Since there are two of them, you get 2ac. The front and back have side lengths of b and c. The area of one of them is b*c, and there are two of them, so the surface area of those two is 2bc. The left and right side have side lengths of a and b, so the surface area of one of them is a*b. Again, there are two of them, so their combined surface area is 2ab.

Surface Area of Any Prism

(b is the shape of the ends)

Surface Area = Lateral area + Area of two ends

(Lateral area) = (perimeter of shape b) * L

Surface Area = (perimeter of shape b) * L+ 2*(Area of shape b)

Surface Area of a Sphere = 4 pi r 2

(r is radius of circle)

Surface Area of a Cylinder = 2 pi r 2 + 2 pi r h

(h is the height of the cylinder, r is the radius of the top)

Surface Area = Areas of top and bottom +Area of the side

Surface Area = 2(Area of top) + (perimeter of top)* height

Surface Area = 2(pi r 2) + (2 pi r)* h

In words, the easiest way is to think of a can. The surface area is the areas of all the parts needed to cover the can. That's the top, the bottom, and the paper label that wraps around the middle.

You can find the area of the top (or the bottom). That's the formula for area of a circle (pi r2). Since there is both a top and a bottom, that gets multiplied by two.

The side is like the label of the can. If you peel it off and lay it flat it will be a rectangle. The area of a rectangle is the product of the two sides. One side is the height of the can, the other side is the perimeter of the circle, since the label wraps once around the can. So the area of the rectangle is (2 pi r)* h.

Add those two parts together and you have the formula for the surface area of a cylinder.

Surface Area = 2(pi r 2) + (2 pi r)* h

Tip! Don't forget the units.

These equations will give you correct answers if you keep the units straight. For example - to find the surface area of a cube with sides of 5 inches, the equation is:

Surface Area = 6*(5 inches)2

= 6*(25 square inches)

= 150 sq. inches

6 0
3 years ago
Other questions:
  • write an equation in point-slope form for the line that has a slope of 15 and contains the point (2,−9).
    6·1 answer
  • Ms.arch is paid $1250 per week but is fined $100 each day she is late to work. Ms.arch wants to make at least $3,000 over the ne
    12·1 answer
  • 4<br> What is the answer to: -2 - (- 9)?*<br> (1 Point)<br> Enter your answer
    6·1 answer
  • Rewrite in simplest terms 9v-8(10v-9)
    15·2 answers
  • (2.9x10^8)divided by(9.2x10^6)
    13·1 answer
  • Which expression represents exponential decay
    15·1 answer
  • If you know how to do this correctly, please help me!! Thank you. 30 points :)
    5·1 answer
  • HELP IN A TEST ILL GIVE BRAINLIEST
    7·1 answer
  • Please help me, please
    7·2 answers
  • YE2 ÷(3Z)= _______<br><br>if y=12, and Z=8
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!