10 x 30=300 because you 3 tens is 30 times 10 is 300. hope it helped.
Answer:
The answer would be B.
Step-by-step explanation:
I hope you all are doing great and staying positive. It will get better.
Answer:
if its 4 as a whole number 4/1
Step-by-step explanation:
60 is 6 times as many as 10, because 60 is 10 times 6.
Answer:
The 95% confidence interval is

Step-by-step explanation:
From the question we are told that
The first sample size is 
The first sample mean is
The first standard deviation is 
The second sample size is 
The second sample mean is 
The second standard deviation is 
Generally the degree of freedom is mathematically represented as
![df = \frac{ [ \frac{s_1^2 }{n_1 } + \frac{s_2^2 }{n_2} ]^2 }{ \frac{1}{(n_1 - 1 )} [ \frac{s_1^2}{n_1} ]^2 + \frac{1}{(n_2 - 1 )} [ \frac{s_2^2}{n_2} ]^2 }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%20%5Cfrac%7Bs_1%5E2%20%7D%7Bn_1%20%7D%20%20%2B%20%5Cfrac%7Bs_2%5E2%20%7D%7Bn_2%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B1%7D%7B%28n_1%20-%201%20%29%7D%20%5B%20%5Cfrac%7Bs_1%5E2%7D%7Bn_1%7D%20%5D%5E2%20%2B%20%5Cfrac%7B1%7D%7B%28n_2%20-%201%20%29%7D%20%5B%20%5Cfrac%7Bs_2%5E2%7D%7Bn_2%7D%20%5D%5E2%20%20%7D)
=> ![df = \frac{ [ \frac{5.9^2 }{34 } + \frac{4.4^2 }{34} ]^2 }{ \frac{1}{(34 - 1 )} [ \frac{5.9^2}{34} ]^2 + \frac{1}{(34- 1 )} [ \frac{4.4^2}{ 34} ]^2 }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%20%5Cfrac%7B5.9%5E2%20%7D%7B34%20%7D%20%20%2B%20%5Cfrac%7B4.4%5E2%20%7D%7B34%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B1%7D%7B%2834%20-%201%20%29%7D%20%5B%20%5Cfrac%7B5.9%5E2%7D%7B34%7D%20%5D%5E2%20%2B%20%5Cfrac%7B1%7D%7B%2834-%201%20%29%7D%20%5B%20%5Cfrac%7B4.4%5E2%7D%7B%2034%7D%20%5D%5E2%20%20%7D)
=> 
Generally the standard error is mathematically represented as

=> 
=> 
From the question we are told the confidence level is 95% , hence the level of significance is

=> 
Generally from the t distribution table the critical value of at a degree of freedom of is

Generally the margin of error is mathematically represented as

=> 
=> 
Generally 95% confidence interval is mathematically represented as

=> 
=> 