1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
7

Find the surface area of the composite figure

Mathematics
2 answers:
nataly862011 [7]3 years ago
8 0

solution given:

For Cuboid

length[l]=11mm

breadth [b]=9mm

height[h]=6mm

For semi cylinder

height[H]=11mm

radius[r]=\frac{9}{2}=4.5mm

Now

Totalsurface area=2(lb+bh+lh)+½(2πr(r+H))-l*b[/tex]

:2(11*9+9*6+11*6)+22/7*4.5(4.5+11)-11*9

:438+219.2-99

:558.2mm²

Here area of base is subtracted as it is not included.

<u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>s</u><u>u</u><u>r</u><u>f</u><u>a</u><u>c</u><u>e</u><u> </u><u>a</u><u>r</u><u>e</u><u>a</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>m</u><u>p</u><u>o</u><u>s</u><u>i</u><u>t</u><u>e</u><u> </u><u>f</u><u>i</u><u>g</u><u>u</u><u>r</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u><u>5</u><u>5</u><u>8.</u><u>2</u><u>mm²</u><u>.</u>

skad [1K]3 years ago
6 0

Answer:

\displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Geometry</u>

Shapes

Congruency

  • Congruent sides and lengths

Radius Formula: \displaystyle r = \frac{d}{2}

  • <em>d</em> is diameter

Surface Area of a Rectangular Prism Formula: SA = 2(wl + hl + hw)

  • <em>w</em> is width
  • <em>l</em> is length
  • <em>h</em> is height

Surface Area of a Cylinder Formula: SA = 2πrh + 2πr²

  • <em>r</em> is radius
  • <em>h</em> is height

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

[Rectangular Prism] <em>w</em> = 9 mm

[Rectangular Prism] <em>l</em> = 11 mm

[Rectangular Prism] <em>h</em> = 6 mm

[Cylinder] <em>d</em> = 9 mm

[Cylinder] <em>h</em> = 11 mm

<u>Step 2: Derive</u>

<em>Modify Surface Area equations and combine</em>

  1. [Surface Area of a Cylinder Formula] Factor:                                                 \displaystyle SA = 2(\pi rh + \pi r^2)
  2. [Surface Area of a Cylinder Formula] Divide by 2 [Semi-Cylinder]:              \displaystyle SA = \pi rh + \pi r^2
  3. [Surface Area of a Semi-Cylinder] Substitute in <em>r</em> [Radius Formula]:             \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d}{2})^2
  4. [Surface Area of a Semi-Cylinder] Evaluate exponents:                                \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d^2}{4})
  5. [Surface Area of a Semi-Cylinder] Multiply:                                                    \displaystyle SA = \frac{\pi dh}{2} + \frac{\pi d^2}{4}
  6. [Surface Area of a Rectangular Prism] Remove top:                                      \displaystyle SA = 2(wh + lh) + lw
  7. Combine Surface Area equations:                                                                  \displaystyle SA_{Total} = \frac{\pi dh}{2} + \frac{\pi d^2}{4} + 2(wh + lh) + lw

<u>Step 3: Find Surface Area</u>

  1. Substitute in variables [Combined Surface Area equation]:                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (9 \ mm)^2}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  2. Evaluate exponents:                                                                                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (81 \ mm^2)}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  3. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[54 \ mm^2 + 66 \ mm^2] + 99 \ mm^2
  4. [Brackets] Add:                                                                                                 \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[120 \ mm^2] + 99 \ mm^2
  5. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 240 \ mm^2 + 99 \ mm^2
  6. Add:                                                                                                                   \displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2
You might be interested in
I will give brainliest!!
photoshop1234 [79]

Answer:

SA: 664 in²

LA: it’s supposed to be 1040cm???

Step-by-step explanation:

SA: find the area of all sides of the prism first (I suppose it’s rectangular?)

80+80+112+112+140+140 = 664

LA: the lateral area formula is (perimeter of base)*height...

perimeter of base = (6+6+14+14) = 40

40 * 26 = 1040

I may be wrong on the second one since I don’t know what the prism’s shape is... Hope it helps though ;)

8 0
3 years ago
the perez family has a rectangle fish tank. How much water will the tank hold if its length is 3 feet, its width is 2 feet, and
myrzilka [38]

V = 3 x 2 x 3 = 18

answer

B) 18 cubic feet

7 0
3 years ago
Devin wants to use his 12% employee discount to buy a video game that is priced at $57.80. A 8.75% sales tax is applied to the d
lesantik [10]

Answer:

43.73

Step-by-step explanation:

use a calculater

5 0
3 years ago
Read 2 more answers
Plzzzz helppppp again
Rina8888 [55]
This is the answer for you problems

5 0
3 years ago
How do you solve this ?
sesenic [268]
2048
that the answer o think
7 0
3 years ago
Read 2 more answers
Other questions:
  • a survey of factories in five northeastern states found that 10% of the 300 workers surveyed were satisfied with the benefits of
    13·1 answer
  • At fairvie middle school 75 band members need to raise a total of 8250 for a trip. So far they have raised 3120. How much money
    14·1 answer
  • Add 49 to the quotient of 125 and 5
    7·2 answers
  • Let a and b 2 positive real number such that a
    12·1 answer
  • I really need help in algebra I don’t know it at all and I already have Dyslexia? Can anybody please help me with my class?
    14·1 answer
  • Show that triangle FUN is isosceles.
    9·1 answer
  • Help me please with my geometry
    11·1 answer
  • How is solving equations different from<br> solving inequalities?
    7·1 answer
  • <img src="https://tex.z-dn.net/?f=%2826%20%5Cdiv%20100%29%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5Ctimes%2010" id
    9·2 answers
  • Solve the equation on the<br> interval [0, 27r).<br> 4(sin x)2 - 2 = 0
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!