1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
7

Find the surface area of the composite figure

Mathematics
2 answers:
nataly862011 [7]3 years ago
8 0

solution given:

For Cuboid

length[l]=11mm

breadth [b]=9mm

height[h]=6mm

For semi cylinder

height[H]=11mm

radius[r]=\frac{9}{2}=4.5mm

Now

Totalsurface area=2(lb+bh+lh)+½(2πr(r+H))-l*b[/tex]

:2(11*9+9*6+11*6)+22/7*4.5(4.5+11)-11*9

:438+219.2-99

:558.2mm²

Here area of base is subtracted as it is not included.

<u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>s</u><u>u</u><u>r</u><u>f</u><u>a</u><u>c</u><u>e</u><u> </u><u>a</u><u>r</u><u>e</u><u>a</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>m</u><u>p</u><u>o</u><u>s</u><u>i</u><u>t</u><u>e</u><u> </u><u>f</u><u>i</u><u>g</u><u>u</u><u>r</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u><u>5</u><u>5</u><u>8.</u><u>2</u><u>mm²</u><u>.</u>

skad [1K]3 years ago
6 0

Answer:

\displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Geometry</u>

Shapes

Congruency

  • Congruent sides and lengths

Radius Formula: \displaystyle r = \frac{d}{2}

  • <em>d</em> is diameter

Surface Area of a Rectangular Prism Formula: SA = 2(wl + hl + hw)

  • <em>w</em> is width
  • <em>l</em> is length
  • <em>h</em> is height

Surface Area of a Cylinder Formula: SA = 2πrh + 2πr²

  • <em>r</em> is radius
  • <em>h</em> is height

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

[Rectangular Prism] <em>w</em> = 9 mm

[Rectangular Prism] <em>l</em> = 11 mm

[Rectangular Prism] <em>h</em> = 6 mm

[Cylinder] <em>d</em> = 9 mm

[Cylinder] <em>h</em> = 11 mm

<u>Step 2: Derive</u>

<em>Modify Surface Area equations and combine</em>

  1. [Surface Area of a Cylinder Formula] Factor:                                                 \displaystyle SA = 2(\pi rh + \pi r^2)
  2. [Surface Area of a Cylinder Formula] Divide by 2 [Semi-Cylinder]:              \displaystyle SA = \pi rh + \pi r^2
  3. [Surface Area of a Semi-Cylinder] Substitute in <em>r</em> [Radius Formula]:             \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d}{2})^2
  4. [Surface Area of a Semi-Cylinder] Evaluate exponents:                                \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d^2}{4})
  5. [Surface Area of a Semi-Cylinder] Multiply:                                                    \displaystyle SA = \frac{\pi dh}{2} + \frac{\pi d^2}{4}
  6. [Surface Area of a Rectangular Prism] Remove top:                                      \displaystyle SA = 2(wh + lh) + lw
  7. Combine Surface Area equations:                                                                  \displaystyle SA_{Total} = \frac{\pi dh}{2} + \frac{\pi d^2}{4} + 2(wh + lh) + lw

<u>Step 3: Find Surface Area</u>

  1. Substitute in variables [Combined Surface Area equation]:                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (9 \ mm)^2}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  2. Evaluate exponents:                                                                                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (81 \ mm^2)}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  3. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[54 \ mm^2 + 66 \ mm^2] + 99 \ mm^2
  4. [Brackets] Add:                                                                                                 \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[120 \ mm^2] + 99 \ mm^2
  5. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 240 \ mm^2 + 99 \ mm^2
  6. Add:                                                                                                                   \displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2
You might be interested in
In 2012 Obama receiver 65,899,660 votes and Romney received 60,932,152 votes. In this election, if a voter for either Obama or R
Contact [7]
For the sake of simplicity
obama = 66 mil
romney = 61 mil

66+61 = 127mil total votes

there are 66mil chances to pick an obama vote from 127mil  -- 66/127

there are 61mil chance to pick a romney vote from 127 mil -- 61/127

see where im going with this?
3 0
3 years ago
Read 2 more answers
If ac =x+3 and db=3x-19, find ac
AveGali [126]
We need some sort of diagram to see what they are. Is there any way to say that ac = db? Either equal angles or equal lines. 
x + 3 = 3x - 19 Add 19
x + 3 + 19 = 3x Subtract x
21 = 2x
x = 21 / 2
x = 10.5

ac = 10.5 + 3
x = 13.5
 
7 0
3 years ago
A hockey player gets 2 goals for every 13 shots. At this rate, how many goals will he make if he
Novay_Z [31]

Answer:

6

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Simplify: (2x-3)(4x+1)
mixas84 [53]

Answer:

8x^2-10x-3

Step-by-step explanation:

(2x-3)(4x+1)

2x(4x+1)-3(4x+1)

8x^2+2x-12x-3

8x^2-10x-3

3 0
3 years ago
1 Point
Ivahew [28]

Answer:

The answer is D

Step-by-step explanation:

You can find it by expanding the equation in the form of y = mx + b :

y - 4 = 3(x + 1)

y - 4 = 3x + 3

y = 3x + 3 + 4

y = 3x + 7

Then, looking at the equation "b" is a y-intercept. The line that touch/passes through y-axis is called <u>y</u><u>-</u><u>i</u><u>n</u><u>t</u><u>e</u><u>r</u><u>c</u><u>e</u><u>p</u><u>t</u>. From the equation, we know that 7 is the y-intercept.

By looking at the diagram, only Graph D is suitable for this equation because the line has touches 7 at y-axis.

5 0
2 years ago
Other questions:
  • What is 1/4 as a percentage​
    12·1 answer
  • A study group is to be selected from 5 freshmen, 7 sophomores, and 4 juniors. a) If a study group is to consist of 2 freshmen, 3
    10·1 answer
  • solve 6/x -4 = 4/x for x and determine if the solution is extraneous or not. x = −8, extraneous x = −8, non-extraneous x = 8, ex
    11·1 answer
  • Pls helppp What are the factors of the product represented below?​
    13·1 answer
  • Choose yes or no to tell whether the pairs of angles are congruent
    11·2 answers
  • What is the answer for 6(5x-3)
    13·1 answer
  • 6x² – x=2<br> Factor and solve
    14·1 answer
  • The ratio of girls to total students at the YMCA summer camp is 6 to 10. If there are 900 students at the YMCA summer camp last
    14·1 answer
  • Combine these radicals.<br> 3/2-5/2
    14·2 answers
  • According to the 2010 census data, the population of Texas was about 25,000,000 people. The land area of Texas is about 260,000
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!