1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
7

Find the surface area of the composite figure

Mathematics
2 answers:
nataly862011 [7]3 years ago
8 0

solution given:

For Cuboid

length[l]=11mm

breadth [b]=9mm

height[h]=6mm

For semi cylinder

height[H]=11mm

radius[r]=\frac{9}{2}=4.5mm

Now

Totalsurface area=2(lb+bh+lh)+½(2πr(r+H))-l*b[/tex]

:2(11*9+9*6+11*6)+22/7*4.5(4.5+11)-11*9

:438+219.2-99

:558.2mm²

Here area of base is subtracted as it is not included.

<u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>s</u><u>u</u><u>r</u><u>f</u><u>a</u><u>c</u><u>e</u><u> </u><u>a</u><u>r</u><u>e</u><u>a</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>m</u><u>p</u><u>o</u><u>s</u><u>i</u><u>t</u><u>e</u><u> </u><u>f</u><u>i</u><u>g</u><u>u</u><u>r</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u><u>5</u><u>5</u><u>8.</u><u>2</u><u>mm²</u><u>.</u>

skad [1K]3 years ago
6 0

Answer:

\displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Geometry</u>

Shapes

Congruency

  • Congruent sides and lengths

Radius Formula: \displaystyle r = \frac{d}{2}

  • <em>d</em> is diameter

Surface Area of a Rectangular Prism Formula: SA = 2(wl + hl + hw)

  • <em>w</em> is width
  • <em>l</em> is length
  • <em>h</em> is height

Surface Area of a Cylinder Formula: SA = 2πrh + 2πr²

  • <em>r</em> is radius
  • <em>h</em> is height

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

[Rectangular Prism] <em>w</em> = 9 mm

[Rectangular Prism] <em>l</em> = 11 mm

[Rectangular Prism] <em>h</em> = 6 mm

[Cylinder] <em>d</em> = 9 mm

[Cylinder] <em>h</em> = 11 mm

<u>Step 2: Derive</u>

<em>Modify Surface Area equations and combine</em>

  1. [Surface Area of a Cylinder Formula] Factor:                                                 \displaystyle SA = 2(\pi rh + \pi r^2)
  2. [Surface Area of a Cylinder Formula] Divide by 2 [Semi-Cylinder]:              \displaystyle SA = \pi rh + \pi r^2
  3. [Surface Area of a Semi-Cylinder] Substitute in <em>r</em> [Radius Formula]:             \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d}{2})^2
  4. [Surface Area of a Semi-Cylinder] Evaluate exponents:                                \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d^2}{4})
  5. [Surface Area of a Semi-Cylinder] Multiply:                                                    \displaystyle SA = \frac{\pi dh}{2} + \frac{\pi d^2}{4}
  6. [Surface Area of a Rectangular Prism] Remove top:                                      \displaystyle SA = 2(wh + lh) + lw
  7. Combine Surface Area equations:                                                                  \displaystyle SA_{Total} = \frac{\pi dh}{2} + \frac{\pi d^2}{4} + 2(wh + lh) + lw

<u>Step 3: Find Surface Area</u>

  1. Substitute in variables [Combined Surface Area equation]:                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (9 \ mm)^2}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  2. Evaluate exponents:                                                                                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (81 \ mm^2)}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  3. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[54 \ mm^2 + 66 \ mm^2] + 99 \ mm^2
  4. [Brackets] Add:                                                                                                 \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[120 \ mm^2] + 99 \ mm^2
  5. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 240 \ mm^2 + 99 \ mm^2
  6. Add:                                                                                                                   \displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2
You might be interested in
Write the slope intercept form of the r question of the line parallel to the graph of 2x+y=5 that passes through (0,1)
Fofino [41]

Step-by-step explanation:

first let's get the original line in slope intercept form.

the vegetal slope intercept form is

y = ax + b

a is the slope, b is the y-intercept.

2x + y = 5

y = -2x + 5

there !

a line parallel to this line must have the same slope (-2).

but it will intersect with the y-axis at a different point.

the y-intersect is the y value when x = 0.

the given point (0, 1) is already that y-intersect (because x=0).

so, the desired parallel line function is

y = -2x + 1

if we had a different point of the line, e.g. (4, -7), we would go back to the general equation

y = ax + b

put in the slope we know (-2)

y = -2x + b

and then put in the x and y cakes if the point and calculate b

-7 = -2×4 + b

-7 = -8 + b

b = 1

and then we get again

y = -2x + 1

4 0
2 years ago
Kamrynn is looking at her five quiz scores of 96 90 94 93 and 90. Determine the mean rounded to the nearest tenth median mode an
Romashka [77]

Answer:

Mean = 90, Median = 93, Mode = 90, Range = 6

Step-by-step explanation:

Mean:

96 + 90 + 94 + 93 + 90 = 463

463 ÷ 5 = 92.5

92.5 to nearest tenth = 90

Mean = 90

Median:

<em>90, 90</em>, <u>93</u>, <em>94 ,96</em>

Median = 93

Mode

<em>96, </em><u>90</u><em>, 94, 93, </em><u>90</u><em> </em>

Mode = 90

Range:

96 - 90 = 6

Range = 6

8 0
2 years ago
Some nutritionists recommend that people eat 31,000 milligrams of fiber each day. The table shows the amount of fiber Jodi has e
Klio2033 [76]

Answer:

Wow thats alot of Fiber

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Anyone know? Will give brainiest
Natalija [7]
By using the process of elimination, the answer is A.
8 0
2 years ago
Read 2 more answers
n automatic machine in a manufacturing process is operating properly if the lengths of an important subcomponent are normally di
Paraphin [41]

Answer:

0.3557 = 35.57% probability that one selected subcomponent is longer than 118 cm.

Step-by-step explanation:

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Normally distributed with a mean of 116 cm and a standard deviation of 5.4 cm.

This means that \mu = 116, \sigma = 5.4

Find the probability that one selected subcomponent is longer than 118 cm.

This is 1 subtracted by the pvalue of Z when X = 118. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{118 - 116}{5.4}

Z = 0.37

Z = 0.37 has a pvalue of 0.6443

1 - 0.6443 = 0.3557

0.3557 = 35.57% probability that one selected subcomponent is longer than 118 cm.

8 0
2 years ago
Other questions:
  • Find the measure of x and round to the nearest tenth!!
    11·1 answer
  • A box has a base of 12 inches by 12 inches and a height of 30 inches. What is the length of the interior diagonal of the box? Ro
    15·1 answer
  • True or false:<br> The solution, root, x-intercept, and zero of a problem are the same.
    5·2 answers
  • Consider the following equation. x+4/x-6 +3/2x+5=7. What are the constraints on x?
    9·1 answer
  • Lydia feeds her dog everyday from the same bag of dog food. She opened a new bag that contains 52 cups of food. if her dog eats
    15·1 answer
  • Mateo ordered a package of
    6·1 answer
  • Three hundred new ones cost $2100. what would be the cost of 120 new ones​
    9·2 answers
  • Chantou pays $525 for rent every month. How much rent does she pay in one year?
    14·2 answers
  • Tim drives at an average of 80km
    6·1 answer
  • In which years were about 3,000,000 visitor hours spent on winter sports?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!