1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
7

Find the surface area of the composite figure

Mathematics
2 answers:
nataly862011 [7]3 years ago
8 0

solution given:

For Cuboid

length[l]=11mm

breadth [b]=9mm

height[h]=6mm

For semi cylinder

height[H]=11mm

radius[r]=\frac{9}{2}=4.5mm

Now

Totalsurface area=2(lb+bh+lh)+½(2πr(r+H))-l*b[/tex]

:2(11*9+9*6+11*6)+22/7*4.5(4.5+11)-11*9

:438+219.2-99

:558.2mm²

Here area of base is subtracted as it is not included.

<u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>s</u><u>u</u><u>r</u><u>f</u><u>a</u><u>c</u><u>e</u><u> </u><u>a</u><u>r</u><u>e</u><u>a</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>m</u><u>p</u><u>o</u><u>s</u><u>i</u><u>t</u><u>e</u><u> </u><u>f</u><u>i</u><u>g</u><u>u</u><u>r</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u><u>5</u><u>5</u><u>8.</u><u>2</u><u>mm²</u><u>.</u>

skad [1K]3 years ago
6 0

Answer:

\displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Geometry</u>

Shapes

Congruency

  • Congruent sides and lengths

Radius Formula: \displaystyle r = \frac{d}{2}

  • <em>d</em> is diameter

Surface Area of a Rectangular Prism Formula: SA = 2(wl + hl + hw)

  • <em>w</em> is width
  • <em>l</em> is length
  • <em>h</em> is height

Surface Area of a Cylinder Formula: SA = 2πrh + 2πr²

  • <em>r</em> is radius
  • <em>h</em> is height

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

[Rectangular Prism] <em>w</em> = 9 mm

[Rectangular Prism] <em>l</em> = 11 mm

[Rectangular Prism] <em>h</em> = 6 mm

[Cylinder] <em>d</em> = 9 mm

[Cylinder] <em>h</em> = 11 mm

<u>Step 2: Derive</u>

<em>Modify Surface Area equations and combine</em>

  1. [Surface Area of a Cylinder Formula] Factor:                                                 \displaystyle SA = 2(\pi rh + \pi r^2)
  2. [Surface Area of a Cylinder Formula] Divide by 2 [Semi-Cylinder]:              \displaystyle SA = \pi rh + \pi r^2
  3. [Surface Area of a Semi-Cylinder] Substitute in <em>r</em> [Radius Formula]:             \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d}{2})^2
  4. [Surface Area of a Semi-Cylinder] Evaluate exponents:                                \displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d^2}{4})
  5. [Surface Area of a Semi-Cylinder] Multiply:                                                    \displaystyle SA = \frac{\pi dh}{2} + \frac{\pi d^2}{4}
  6. [Surface Area of a Rectangular Prism] Remove top:                                      \displaystyle SA = 2(wh + lh) + lw
  7. Combine Surface Area equations:                                                                  \displaystyle SA_{Total} = \frac{\pi dh}{2} + \frac{\pi d^2}{4} + 2(wh + lh) + lw

<u>Step 3: Find Surface Area</u>

  1. Substitute in variables [Combined Surface Area equation]:                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (9 \ mm)^2}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  2. Evaluate exponents:                                                                                         \displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (81 \ mm^2)}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)
  3. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[54 \ mm^2 + 66 \ mm^2] + 99 \ mm^2
  4. [Brackets] Add:                                                                                                 \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[120 \ mm^2] + 99 \ mm^2
  5. Multiply:                                                                                                            \displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 240 \ mm^2 + 99 \ mm^2
  6. Add:                                                                                                                   \displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2
You might be interested in
A sector of area 2pi/3 square inches is formed by a central angle of 45 degrees. What is the radius of the circle?
Kamila [148]
.03333333333333333333333
5 0
3 years ago
What is the square root of 144?
Novosadov [1.4K]

Answer:

12

Step-by-step explanation:

12 times 12 is 144

Hope this helps

3 0
3 years ago
Find the value of x. Round to<br> the nearest tenth.
denpristay [2]

Answer:

\displaystyle x \approx 38.2 ^{\circ}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

<u>Pre-Calculus</u>

Law of Sines: \displaystyle \frac{sin(A)}{a} =\frac{sin(B)}{b} =\frac{sin(C)}{c}

  • A, B, C are angle measures
  • a, b, c are leg lengths

Step-by-step explanation:

<u>Step 1: Identify</u>

A = 27°, a = 11

B = x°, b = 15

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Substitute [LOS]:                     \displaystyle \frac{sin(27^{\circ})}{11} =\frac{sin(x^{\circ})}{15}
  2. Cross-multiply:                        \displaystyle 11sin(x^{\circ}) = 15sin(27^{\circ})
  3. Isolate <em>x</em> term:                         \displaystyle sin(x^{\circ}) = \frac{15sin(27^{\circ})}{11}
  4. Isolate <em>x</em>:                                  \displaystyle x = sin^{-1}(\frac{15sin(27)}{11})
  5. Evaluate:                                 \displaystyle x = 38.2488 ^{\circ}
  6. Round:                                    \displaystyle x \approx 38.2 ^{\circ}
7 0
3 years ago
Solve for x. x^2=1/4
inessss [21]

Answer:

c) x= +/- 1/2

5 0
3 years ago
Read 2 more answers
What is 1,680+110 7/16
natita [175]
I don't get because you did not add a symbol between 110 and 7/16 so i can't tell you.
5 0
4 years ago
Other questions:
  • Whats 2+2 equal when the answer is not 4
    9·2 answers
  • Solve by substitution.<br> 3x + 5y = 12<br> x + 4y = 11
    10·2 answers
  • What are the domain and range of F(x) = -8 ?
    7·1 answer
  • What is 1 5/6 + 1/2?<br> A) 14/6<br><br> B) 17/12<br><br> C) 17/6<br><br> D) 25/12
    10·1 answer
  • How do you calculate the bearing?
    13·1 answer
  • A toy rocket launched into the air has a height (h feet) at any given time (t seconds) as h=- 16t^2 + 160t until it hits the gro
    14·1 answer
  • Does anybody here hate me and think I am stupid or a freak or ulgy if so answer or comment
    15·1 answer
  • The owner increases the sale price by 120% when buys jackets for ​$45 and sells them. How many jackets must the owner buy for th
    15·1 answer
  • Dependent or independent
    13·1 answer
  • The area of a rectangular carpet is 252 square feet. The length is nine feet more than the width. Find the length and the width
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!