Answer:
Step-by-step explanation:
You have the domain. It is given as -1≤x≤1
Now all you have to do is figure out the range which is the y value. At first glance I think it might be 3, but that does not look very logical. I'll post this much of it now and be back in under an hour with a more complete answer.
Of course! How silly of me. There is a minimum of y = 1 in the range which comes from x = 0
I've included a graph so you can see how this all works.
So the range = 1 ≤ y ≤ 3
Answer:
9 square kilometers
Step-by-step explanation:
Let's round the width to 2.0 kilometers, and round the length to 4.5 kilometers.
We know that area is length times width, so
A = lw
A = 2.0*4.5
<u>A = 9.0 square kilometers</u>
If we do this on the calculator, it's around 9.36 square kilometers, so our estimate was good.
Hmm.. Maybe a situation such as: A sports team lost eight points during their game. How is this presented as an integer?
The answer and process is shown in the following picture
Answer:
![f(x)=4\sqrt[3]{16}^{2x}](https://tex.z-dn.net/?f=f%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D)
Step-by-step explanation:
We believe you're wanting to find a function with an equivalent base of ...
![4\sqrt[3]{4}\approx 6.3496](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B4%7D%5Capprox%206.3496)
The functions you're looking at seem to be ...
![f(x)=2\sqrt[3]{16}^x\approx 2\cdot2.5198^x\\\\f(x)=2\sqrt[3]{64}^x=2\cdot 4^x\\\\f(x)=4\sqrt[3]{16}^{2x}\approx 4\cdot 6.3496^x\ \leftarrow\text{ this one}\\\\f(x)=4\sqrt[3]{64}^{2x}=4\cdot 16^x](https://tex.z-dn.net/?f=f%28x%29%3D2%5Csqrt%5B3%5D%7B16%7D%5Ex%5Capprox%202%5Ccdot2.5198%5Ex%5C%5C%5C%5Cf%28x%29%3D2%5Csqrt%5B3%5D%7B64%7D%5Ex%3D2%5Ccdot%204%5Ex%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D%5Capprox%204%5Ccdot%206.3496%5Ex%5C%20%5Cleftarrow%5Ctext%7B%20this%20one%7D%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B64%7D%5E%7B2x%7D%3D4%5Ccdot%2016%5Ex)
The third choice seems to be the one you're looking for.