You know where the glacier is now, and how far it moves in
one year. The question is asking how close to the sea it will be
after many years.
Step-1 ... you have to find out how many years
Step-2 ... you have to figure out how far it moves in that many years
Step-3 ... you have to figure out where it is after it moves that far
The first time I worked this problem, I left out the most important
step ... READ the problem carefully and make SURE you know
the real question. The first time I worked the problem, I thought
I was done after Step-2.
============================
Step-1: How many years is it from 2010 to 2030 ?
(2030 - 2010) = 20 years .
Step-2: How far will the glacier move in 20 years ?
It moves 0.004 mile in 1 year.
In 20 years, it moves 0.004 mile 20 times
0.004 x 20 = 0.08 mile
Step-3: How far will it be from the sea after all those years ?
In 2010, when we started watching it, it was 6.9 miles
from the sea.
The glacier moves toward the sea.
In 20 years, it will be 0.08 mile closer to the sea.
How close will it be ?
6.9 miles - 0.08 mile = 6.82 miles (if it doesn't melt)
So just add 2 1/2 = 2.5and 1 1/4= 1.25 and that will equal, 3.75 cups in other words that will equal 3 3/4.cups of sugar total.
Answer:

Step-by-step explanation:
We are given a joint probability table.
There are four different graders in a school
1. Grade Ninth
2. Grade Tenth
3. Grade Eleventh
4. Grade Twelfth
Field trip refers to the students who will attending the amusement park field trip.
No field trip refers to the students who will not be attending the amusement park field trip.
We want to find out the probability that the selected student is an eleventh grader given that the student is going on a field trip.

Where P(eleventh and FT) is the probability of students who are in eleventh grade and will be going to field trip

Where P(FT) is the probability of students who will be going to field trip

So the required probability is

Answer:
y+3= -6(x+9) is the answer
Step-by-step explanation: