D 8x-3 because must add them all together
Answer:
No, mn is not even if m and n are odd.
If m and n are odd, then mn is odd as well.
==================================================
Proof:
If m is odd, then it is in the form m = 2p+1, where p is some integer.
So if p = 0, then m = 1. If p = 1, then m = 3, and so on.
Similarly, if n is odd then n = 2q+1 for some integer q.
Multiply out m and n using the distribution rule
m*n = (2p+1)*(2q+1)
m*n = 2p(2q+1) + 1(2q+1)
m*n = 4pq+2p+2q+1
m*n = 2( 2pq+p+q) + 1
m*n = 2r + 1
note how I replaced the "2pq+p+q" portion with r. So I let r = 2pq+p+q, which is an integer.
The result 2r+1 is some other odd number as it fits the form 2*(integer)+1
Therefore, multiplying any two odd numbers will result in some other odd number.
------------------------
Examples:
- 3*5 = 15
- 7*9 = 63
- 11*15 = 165
- 9*3 = 27
So there is no way to have m*n be even if both m and n are odd.
The general rules are as follows
- odd * odd = odd
- even * odd = even
- even * even = even
The proof of the other two cases would follow a similar line of reasoning as shown above.
Answer:
it has to be 60
Step-by-step explanation:
4 x 15 = 60
Answer:
-14/20
-21/30
Step-by-step explanation:
-7/10
-7x2=-14 and -10x2=-20
-14/20
-7/10
-7x3=-21 and -10x3= -30
-21/30
Question:
Simplify the radical expressions

![10.\ \sqrt[3]{135}](https://tex.z-dn.net/?f=10.%5C%20%5Csqrt%5B3%5D%7B135%7D)
Answer:





![\sqrt[3]{24} = 2 \sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B24%7D%20%3D%202%20%5Csqrt%5B3%5D%7B3%7D)
![\sqrt[3]{81} =3\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B81%7D%20%3D3%5Csqrt%5B3%5D%7B3%7D)

![\sqrt[3]{40} = 2 \sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B40%7D%20%3D%202%20%5Csqrt%5B3%5D%7B5%7D)
![\sqrt[3]{135} =3\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%20%3D3%5Csqrt%5B3%5D%7B5%7D)
Step-by-step explanation:
Express 63 as 9 * 7

Split:



Express 48 as 16 * 3

Split



Express 75 as 25 * 3

Split


Express 99 as 9 * 11

Split


Express 92 as 4 * 23



Express 24 as 8 * 3
![\sqrt[3]{24} = \sqrt[3]{8} * \sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B24%7D%20%3D%20%5Csqrt%5B3%5D%7B8%7D%20%2A%20%5Csqrt%5B3%5D%7B3%7D)
Express 8 as 2^3
![\sqrt[3]{24} = \sqrt[3]{2^3} * \sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B24%7D%20%3D%20%5Csqrt%5B3%5D%7B2%5E3%7D%20%2A%20%5Csqrt%5B3%5D%7B3%7D)
![\sqrt[3]{24} = 2 \sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B24%7D%20%3D%202%20%5Csqrt%5B3%5D%7B3%7D)
![7.\ \sqrt[3]{81}](https://tex.z-dn.net/?f=7.%5C%20%5Csqrt%5B3%5D%7B81%7D)
Express 81 as 27 * 3
![\sqrt[3]{81} =\sqrt[3]{27}*\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B81%7D%20%3D%5Csqrt%5B3%5D%7B27%7D%2A%5Csqrt%5B3%5D%7B3%7D)
Express 27 as 3^3
![\sqrt[3]{81} =\sqrt[3]{3^3}*\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B81%7D%20%3D%5Csqrt%5B3%5D%7B3%5E3%7D%2A%5Csqrt%5B3%5D%7B3%7D)
![\sqrt[3]{81} =3\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B81%7D%20%3D3%5Csqrt%5B3%5D%7B3%7D)
Express 128 as 64 * 2


![9.\sqrt[3]{40}](https://tex.z-dn.net/?f=9.%5Csqrt%5B3%5D%7B40%7D)
Express 40 as 8 * 5
![\sqrt[3]{40} = \sqrt[3]{8} * \sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B40%7D%20%3D%20%5Csqrt%5B3%5D%7B8%7D%20%2A%20%5Csqrt%5B3%5D%7B5%7D)
![\sqrt[3]{40} = \sqrt[3]{2^3} * \sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B40%7D%20%3D%20%5Csqrt%5B3%5D%7B2%5E3%7D%20%2A%20%5Csqrt%5B3%5D%7B5%7D)
![\sqrt[3]{40} = 2 \sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B40%7D%20%3D%202%20%5Csqrt%5B3%5D%7B5%7D)
![10.\ \sqrt[3]{135}](https://tex.z-dn.net/?f=10.%5C%20%5Csqrt%5B3%5D%7B135%7D)
Express 135 as 27 * 5
![\sqrt[3]{135} =\sqrt[3]{27}*\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%20%3D%5Csqrt%5B3%5D%7B27%7D%2A%5Csqrt%5B3%5D%7B5%7D)
Express 27 as 3^3
![\sqrt[3]{135} =\sqrt[3]{27}*\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%20%3D%5Csqrt%5B3%5D%7B27%7D%2A%5Csqrt%5B3%5D%7B5%7D)
![\sqrt[3]{135} =3\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%20%3D3%5Csqrt%5B3%5D%7B5%7D)