1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
2 years ago
9

Here’s!! hxhxhxbbd & thanks again

Mathematics
1 answer:
kykrilka [37]2 years ago
6 0

Answer:

x=2

Step-by-step explanation:

this is just like the last one. since it is vertical it only includes the x value 2

You might be interested in
Find an expression which represents the difference when (-4x-2) is subtracted from (-8x+3) in simplest terms.
g100num [7]

Answer:

for problem 1: -4 x -2 = -6

for problem 2: -8x +3 = -11x

Step-by-step explanation:

I hope it helped

brainlest please

7 0
2 years ago
Read 2 more answers
PLS HELP ASAP FIRST CORRECT ANSWER GETS BRAINLEIST​
solmaris [256]

Answer:

50 cm^2

Step-by-step explanation:

area of rectangle = base * height

5 * 7 = 35

area of triangle = base * height / 2

5 * 4 = 20/2 = 10

5 * 2 = 10/2 = 5

add them all up

35 + 5 + 10 = 50 cm^2

6 0
2 years ago
The surface area of a right circular cone of radius r and height h is S = πr√ r 2 + h 2 , and its volume is V = 1 3 πr2h. What i
kirill115 [55]

Answer:

Required largest volume is 0.407114 unit.

Step-by-step explanation:

Given surface area of a right circular cone of radious r and height h is,

S=\pi r\sqrt{r^2+h^2}

and volume,

V=\frac{1}{3}\pi r^2 h

To find the largest volume if the surface area is S=8 (say), then applying Lagranges multipliers,

f(r,h)=\frac{1}{3}\pi r^2 h

subject to,

g(r,h)=\pi r\sqrt{r^2+h^2}=8\hfill (1)

We know for maximum volume r\neq 0. So let \lambda be the Lagranges multipliers be such that,

f_r=\lambda g_r

\implies \frac{2}{3}\pi r h=\lambda (\pi \sqrt{r^2+h^2}+\frac{\pi r^2}{\sqrt{r^2+h^2}})

\implies \frac{2}{3}r h= \lambda (\sqrt{r^2+h^2}+\frac{ r^2}{\sqrt{r^2+h^2}})\hfill (2)

And,

f_h=\lambda g_h

\implies \frac{1}{3}\pi r^2=\lambda \frac{\pi rh}{\sqrt{r^2+h^2}}

\implies \lambda=\frac{r\sqrt{r^2+h^2}}{3h}\hfill (3)

Substitute (3) in (2) we get,

\frac{2}{3}rh=\frac{r\sqrt{R^2+h^2}}{3h}(\sqrt{R^2+h^2+}+\frac{r^2}{\sqrt{r^2+h^2}})

\implies \frac{2}{3}rh=\frac{r}{3h}(2r^2+h^2)

\implies h^2=2r^2

Substitute this value in (1) we get,

\pi r\sqrt{h^2+r^2}=8

\implies \pi r \sqrt{2r^2+r^2}=8

\implies r=\sqrt{\frac{8}{\pi\sqrt{3}}}\equiv 1.21252

Then,

h=\sqrt{2}(1.21252)\equiv 1.71476

Hence largest volume,

V=\frac{1}{3}\times \pi \times\frac{\pi}{8\sqrt{3}}\times 1.71476=0.407114

3 0
3 years ago
Write the product of 0.4 x 0.4 x 0.4 in exponential form.
raketka [301]

Answer: 0.4^3

Step-by-step explanation:

you just count how many times you multiply 0.4 and use that number to be the exponents

6 0
3 years ago
What is equivalent to k/2​
Mazyrski [523]

Answer:

k x 1/2

Step-by-step explanation:

because k x 1/2 = k/2

8 0
2 years ago
Other questions:
  • What is -4x-2(3x-12)-16=-2(-4+5x)
    7·2 answers
  • A ship has a 15-foot-tall mast with a 37.13-foot-long rope that is strung from the top of the mast to the ship's deck. What is t
    7·1 answer
  • Brian drove 120 miles at speed of 60 miles per hour. He drove the same distance back home at average speed of 40 miles per hour.
    7·1 answer
  • A researcher has developed a new drug designed to reduce blood pressure. In an experiment, 21 subjects were assigned randomly to
    9·1 answer
  • A carrot has 55 grams of sugar per serving. A banana has 15 grams of sugar per serving. Which statement is true?
    6·1 answer
  • In Juan's coin bank there are nickels (n),
    11·1 answer
  • Which investment would be worth the MOST after 20 years?
    12·1 answer
  • COULD A KIND SOUL PLEASE HELP ME OUT???!!!!!!
    12·2 answers
  • Helpp i dont want to fail math
    7·1 answer
  • Which of the following equations can be used to find the length of EF in the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!