Answer:
About $1.86
Step-by-step explanation:
It could be rounded to $1.90.
P(most favorable outcome) = 1 -(0.03 +0.16 -0.01) = 0.82
_____
"repair fails" includes the "infection and failure" case, as does "infection". By adding the probability of "repair fails" and "infection", we count the "infection and failure" case twice. So, we have to subtract the probability of "infection and failure" from the sum of "repaire fails" and "infection" in order to count each bad outcome only once.
The probability of a good outcome is the complement of the probability of a bad outcome.
Answer:
Lucas monthly net pay is $1758
Step-by-step explanation:
Lucas works for a salary of $2,396 per month.
His deductions include $360 of federal income tax,
$148 for Social Security,
$35 for Medicare, and
a $95 insurance premium.
Now,
2396 - 360 - 148 - 35 - 95 = 1758
Thus, Lucas monthly net pay is $1758
<u>-TheUnknownScientist</u>
Answer: See Below
<u>Step-by-step explanation:</u>
NOTE: You need the Unit Circle to answer these (attached)
5) cos (t) = 1
Where on the Unit Circle does cos = 1?
Answer: at 0π (0°) and all rotations of 2π (360°)
In radians: t = 0π + 2πn
In degrees: t = 0° + 360n
******************************************************************************
![6)\quad sin (t) = \dfrac{1}{2}](https://tex.z-dn.net/?f=6%29%5Cquad%20sin%20%28t%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D)
Where on the Unit Circle does
<em>Hint: sin is only positive in Quadrants I and II</em>
![\text{Answer: at}\ \dfrac{\pi}{6}\ (30^o)\ \text{and at}\ \dfrac{5\pi}{6}\ (150^o)\ \text{and all rotations of}\ 2\pi \ (360^o)](https://tex.z-dn.net/?f=%5Ctext%7BAnswer%3A%20at%7D%5C%20%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5C%20%2830%5Eo%29%5C%20%5Ctext%7Band%20at%7D%5C%20%5Cdfrac%7B5%5Cpi%7D%7B6%7D%5C%20%28150%5Eo%29%5C%20%5Ctext%7Band%20all%20rotations%20of%7D%5C%202%5Cpi%20%5C%20%28360%5Eo%29)
![\text{In radians:}\ t = \dfrac{\pi}{6} + 2\pi n \quad \text{and}\quad \dfrac{5\pi}{6} + 2\pi n](https://tex.z-dn.net/?f=%5Ctext%7BIn%20radians%3A%7D%5C%20t%20%3D%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%2B%202%5Cpi%20n%20%5Cquad%20%5Ctext%7Band%7D%5Cquad%20%5Cdfrac%7B5%5Cpi%7D%7B6%7D%20%2B%202%5Cpi%20n)
In degrees: t = 30° + 360n and 150° + 360n
******************************************************************************
![7)\quad tan (t) = -\sqrt3](https://tex.z-dn.net/?f=7%29%5Cquad%20tan%20%28t%29%20%3D%20-%5Csqrt3)
Where on the Unit Circle does ![\dfrac{sin}{cos} = \dfrac{-\sqrt3}{1}\ or\ \dfrac{\sqrt3}{-1}\quad \rightarrow \quad (1,-\sqrt3)\ or\ (-1, \sqrt3)](https://tex.z-dn.net/?f=%5Cdfrac%7Bsin%7D%7Bcos%7D%20%3D%20%5Cdfrac%7B-%5Csqrt3%7D%7B1%7D%5C%20or%5C%20%5Cdfrac%7B%5Csqrt3%7D%7B-1%7D%5Cquad%20%5Crightarrow%20%5Cquad%20%281%2C-%5Csqrt3%29%5C%20or%5C%20%28-1%2C%20%5Csqrt3%29)
<em>Hint: sin and cos are only opposite signs in Quadrants II and IV</em>
![\text{Answer: at}\ \dfrac{2\pi}{3}\ (120^o)\ \text{and at}\ \dfrac{5\pi}{3}\ (300^o)\ \text{and all rotations of}\ 2\pi \ (360^o)](https://tex.z-dn.net/?f=%5Ctext%7BAnswer%3A%20at%7D%5C%20%20%5Cdfrac%7B2%5Cpi%7D%7B3%7D%5C%20%28120%5Eo%29%5C%20%5Ctext%7Band%20at%7D%5C%20%5Cdfrac%7B5%5Cpi%7D%7B3%7D%5C%20%28300%5Eo%29%5C%20%5Ctext%7Band%20all%20rotations%20of%7D%5C%202%5Cpi%20%5C%20%28360%5Eo%29)
![\text{In radians:}\ t = \dfrac{2\pi}{3} + 2\pi n \quad \text{and}\quad \dfrac{5\pi}{3} + 2\pi n](https://tex.z-dn.net/?f=%5Ctext%7BIn%20radians%3A%7D%5C%20t%20%3D%20%5Cdfrac%7B2%5Cpi%7D%7B3%7D%20%2B%202%5Cpi%20n%20%5Cquad%20%5Ctext%7Band%7D%5Cquad%20%5Cdfrac%7B5%5Cpi%7D%7B3%7D%20%2B%202%5Cpi%20n)
In degrees: t = 120° + 360n and 300° + 360n
Answer:145⁶°
Step-by-step explanation: