Well, in order to prove the Pythagorean theorem, every triangle you are using has to have one right angle (90-degree angle), and the side opposite to it will be called the hypothenuse. The remaining two triangles will be acute angles (<90 degrees), and the sides opposite to them are called sides/catheti.
Two numbers that have an absolute value of 16 is 8.
The trick here is to relate the NUMBER of coins to each other in one equation, and then the VALUE of the coins in another equation. If I have 1 dime, that 1 dime is worth 10 cents. The number of dimes is obviously not equal to the value. Let's call quarters q and dimes d. The number of these 2 types of coins added together is 80 coins. So q + d = 80. Now, we know that quarters are worth .25 and dimes are worth .1, so we express a quarter's worth as .25q; we express a dime's worth as .1d. The value of the coins we have is 14.90. So that equation is .25q + .1d = 14.90. Let's solve the first equation for q. q = 80 - d. We can now use that as a substitution for q into the second equation, giving us an equation with only 1 unknown, d. .25(80-d) + .1d = 14.90. Distributing through the parenthesis we have 20 - .25d + .1d = 14.90. Combining like terms gives us - .15d = - 5.1. We will divide both sides by - .15 to get that the number of dimes is 34. If we had a total of 80 coins, then the number of quarters is 80 - 34, which is 46. 46 quarters and 34 dimes
F(x) = 2x + 5
the bucket starts with 5 gallons of water and is being filled at a rate of 2 gallons per minute