1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
3 years ago
8

Based on the number of voids, a ferrite slab is classified as either high, medium, or low. Historically, 5% of the slabs are cla

ssified as high, 85% as medium, and 10% as low. A group of 20 slabs that are independent regarding voids is selected for test ing. Let X, Y, and Z denote the number of slabs that are classified as high, medium, and low, respectively.
(a) What are the name and values of the parameters of the joint probability distribution of X, Y , and
Z?
(b) What is the range of the joint probability distribution of X, Y, and Z?
(c) What are the name and the values of the parameters of the marginal probability distribution of X?
(d) Determine E[X] and Var(X).
Determine the following:
(e) P{X = 1, Y = 17, Z = 3}
(f) P{X ? 1, Y = 17, Z = 3}
(g) P{X ? 1}
(h) E[Y ]
Mathematics
1 answer:
AnnyKZ [126]3 years ago
8 0

Answer:

(a) Name: Multinomial distribution

Parameters: p_1 = 5\%   p_2 = 85\%   p_3 = 10\%  n = 20

(b) Range: \{(x,y,z)| x + y + z=20\}

(c) Name: Binomial distribution

Parameters: p_1 = 5\%      n = 20

(d)\ E(x) = 1   Var(x) = 0.95

(e)\ P(X = 1, Y = 17, Z = 3) = 0

(f)\ P(X \le 1, Y = 17, Z = 3) =0.07195

(g)\ P(X \le 1) = 0.7359

(h)\ E(Y) = 17

Step-by-step explanation:

Given

p_1 = 5\%

p_2 = 85\%

p_3 = 10\%

n = 20

X \to High Slabs

Y \to Medium Slabs

Z \to Low Slabs

Solving (a): Names and values of joint pdf of X, Y and Z

Given that:

X \to Number of voids considered as high slabs

Y \to Number of voids considered as medium slabs

Z \to Number of voids considered as low slabs

Since the variables are more than 2 (2 means binomial), then the name is multinomial distribution

The parameters are:

p_1 = 5\%   p_2 = 85\%   p_3 = 10\%  n = 20

And the mass function is:

f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z

Solving (b): The range of the joint pdf of X, Y and Z

Given that:

n = 20

The number of voids (x, y and z) cannot be negative and they must be integers; So:

x + y + z = n

x + y + z = 20

Hence, the range is:

\{(x,y,z)| x + y + z=20\}

Solving (c): Names and values of marginal pdf of X

We have the following parameters attributed to X:

p_1 = 5\% and n = 20

Hence, the name is: Binomial distribution

Solving (d): E(x) and Var(x)

In (c), we have:

p_1 = 5\% and n = 20

E(x) = p_1* n

E(x) = 5\% * 20

E(x) = 1

Var(x) = E(x) * (1 - p_1)

Var(x) = 1 * (1 - 5\%)

Var(x) = 1 * 0.95

Var(x) = 0.95

(e)\ P(X = 1, Y = 17, Z = 3)

In (b), we have: x + y + z = 20

However, the given values of x in this question implies that:

x + y + z = 1 + 17 + 3

x + y + z = 21

Hence:

P(X = 1, Y = 17, Z = 3) = 0

(f)\ P{X \le 1, Y = 17, Z = 3)

This question implies that:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) + P(X = 1, Y = 17, Z = 3)

Because

0, 1 \le 1 --- for x

In (e), we have:

P(X = 1, Y = 17, Z = 3) = 0

So:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) +0

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)

In (a), we have:

f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z

So:

P(X=0; Y=17; Z = 3) = \frac{20!}{0! * 17! * 3!} * (5\%)^0 * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20!}{1 * 17! * 3!} * 1 * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20!}{17! * 3!} * (85\%)^{17} * (10\%)^{3}

Expand

P(X=0; Y=17; Z = 3) = \frac{20*19*18*17!}{17! * 3*2*1} * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20*19*18}{6} * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = 20*19*3 * (85\%)^{17} * (10\%)^{3}

Using a calculator, we have:

P(X=0; Y=17; Z = 3) = 0.07195

So:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)

P(X \le 1, Y = 17, Z = 3) =0.07195

(g)\ P(X \le 1)

This implies that:

P(X \le 1) = P(X = 0) + P(X = 1)

In (c), we established that X is a binomial distribution with the following parameters:

p_1 = 5\%      n = 20

Such that:

P(X=x) = ^nC_x * p_1^x * (1 - p_1)^{n - x}

So:

P(X=0) = ^{20}C_0 * (5\%)^0 * (1 - 5\%)^{20 - 0}

P(X=0) = ^{20}C_0 * 1 * (1 - 5\%)^{20}

P(X=0) = 1 * 1 * (95\%)^{20}

P(X=0) = 0.3585

P(X=1) = ^{20}C_1 * (5\%)^1 * (1 - 5\%)^{20 - 1}

P(X=1) = 20 * (5\%)* (1 - 5\%)^{19}

P(X=1) = 0.3774

So:

P(X \le 1) = P(X = 0) + P(X = 1)

P(X \le 1) = 0.3585 + 0.3774

P(X \le 1) = 0.7359

(h)\ E(Y)

Y has the following parameters

p_2 = 85\%  and    n = 20

E(Y) = p_2 * n

E(Y) = 85\% * 20

E(Y) = 17

You might be interested in
Jane wants to pick out an outfit for the school dance
Shkiper50 [21]

Answer:

Give me more info for the question so I can help you!

Step-by-step explanation:

I will be here waiting

4 0
3 years ago
Find the slope of the line passing through (-2,5) and (9,-7)?
Marat540 [252]
Use the slope formula.
Y2 - Y1 / X2 - X1
(-7 - 5) / (9 - -2)
(-12) / (11)
So answer: slope(m) = -12/11
8 0
3 years ago
A roller coaster can give rides to 50 more people. Each car can hold 5 people. What is the best way to interpret the remainder o
kompoz [17]
My answer would be the letter B
7 0
3 years ago
What's an equivalent fraction for 10 15 by dividing 
Fofino [41]
The correct answer is two thirds

4 0
3 years ago
Read 2 more answers
According to order of operations, which two operations are performed last?
Elina [12.6K]
A or b
P
E
M
D
A
S
I use it now
4 0
3 years ago
Other questions:
  • Pete has $165 in five- and ten-dollar bills. If he has twenty bills total, how many of each does he have? (Write an equation and
    15·1 answer
  • Complete the tasks and answer the questions. Use the 2SD method to estimate the true proportion of the population of your city t
    7·1 answer
  • You can remember the three numbers to your combination lock, but you can’t remember their order. How many different combinations
    12·1 answer
  • Use method of completing the square to transform quadratic equation into form (x+p)^2=q.
    12·1 answer
  • Ben and Carson went to the movies with friends. Ben purchased 3 popcorn and 2 boxes of candy for $41. Carson purchased 1 popcorn
    8·1 answer
  • Marie can find the volume of a cube by using the formula V = s³, where s represents the side length of the cube. If Marie’s cube
    8·1 answer
  • The total cost of a compact disc, including a 6% sales tax, is $14.31.
    5·2 answers
  • Find the factored form of 4x2– x - 14.
    14·1 answer
  • Which ordered pair is NOT in the solution set of −2x + 3y  ≥  12?
    8·1 answer
  • Latoya took a taxi home from her best
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!