1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
3 years ago
7

Will someone please help me..?

Mathematics
1 answer:
bekas [8.4K]3 years ago
5 0

Answer:

What help do you need?

tell me about it

You might be interested in
How do you solve this step by step? “ I’m thinking of a number. If you multiply it by 6 and then add 7, you will get 55. What is
lozanna [386]

Answer:

8

Step-by-step explanation:

55 -7 = 48

48/6= 8

Check answer:

8x6= 48

48+7= 55

5 0
3 years ago
Read 2 more answers
Since Beth was born the population of her towns has increased at a rate of 850 people per year. On beths 9th birthday the total
Lana71 [14]

Answer:

313,600

Step-by-step explanation:

Let t represent number of years after Beth's 9th birthday.

We have been given that since Beth was born the population of her towns has increased at a rate of 850 people per year. So number of people increased in t years would be 850t.

We are also told that on Beth's 9th birthday the total population was nearly 307,650. This means that t-intercept is 307,650.

The population of town t years after Beth's birthday would be P(t)=850t+307,650.

To find population on Beth's 16th birthday, we will substitute t=7 in our equation as Beth's 16th birthday would be 7 years after 9th birthday.

P(t)=850(7)+307,650

P(7)=5950+307,650

P(7)=313,600

Therefore, the population on Beth's 16th birthday would be 313,600.

3 0
3 years ago
Is 2+2=4 I do not know
Maksim231197 [3]

Answer:

yes

Step-by-step explanation:

1.2.3.4

7 0
3 years ago
Can anyone help me out with this?​
bogdanovich [222]

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

5 0
2 years ago
Khloe used 2 1/4 gallons of paint on her living room walls. She used 4 times as much paint for her kitchen and dining room walls
ValentinkaMS [17]

Answer:

9 gallons

Step-by-step explanation:

Since Khloe used 4 times (4x) as much paint for the kitchen and dining room walls, you can take the amount she used on the living room walls and multiply by 4:

2\frac{1}{4}=\frac{9}{4}*\frac{4}{1}=\frac{36}{4}=9

6 0
3 years ago
Other questions:
  • A=2 b=3 c=4<br><br> 1) ab - c =<br> 2) 6c - 2b=<br> 3) a + b - c + 5 =<br> 4) 7c - 2a =
    11·2 answers
  • Solve for a: x + a = y<br> A)<br> a=7<br> a = у<br> a = y - x<br> D)<br> a= 0
    12·2 answers
  • Please help idk know how to find x
    10·1 answer
  • If<br> R = (5+T)P/3<br> then what is p?
    8·1 answer
  • The radius of a circle is 3.8 feet. Find the diameter.
    7·2 answers
  • A 45 foot ladder is set against the side of a house so that it reaches up 27 feet. If Nicole grabs the ladder at its base and pu
    11·1 answer
  • A single die is rolled twice. Find found the probability of rolling an odd number and a number greater than four in either order
    8·2 answers
  • Which of the following tables represents a proportional relationship?
    11·1 answer
  • Divide 63.5 ÷ 0.25 round the quotient to the nearest ten-thousandth
    7·1 answer
  • Which equation represents the transformed function below? on a coordinate plane, a parent function starts at (0, negative 1) and
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!