1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
2 years ago
6

Can anyone help me out with this?​

Mathematics
1 answer:
bogdanovich [222]2 years ago
5 0

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

You might be interested in
BRAINLIEST FOR THE RIGHT ANSWERRR<br><br> If useful, points are (1,0) (0,-4)
Lapatulllka [165]

Answer:

x-inercept = 1  y-intercept = -4

Step-by-step explanation:

3 0
2 years ago
51 is 85% of what number?<br><br>A) 1.67<br>B) 51<br>C) 60<br>D) 43.35
givi [52]
(C) 60 is your answer
4 0
3 years ago
Read 2 more answers
Math HW please help.
Margarita [4]

Answer:

A  x = 3

Step-by-step explanation:

A = ½θR²

R = x

x = √(2Α/θ)

θ = (360 - 60)(π/180) = 5π/3 radians

x = √(2(15π/2) / (5π/3))

x = √(15π(3/5π))

x = √9

x = 3

7 0
3 years ago
Question 61 point)
Natasha_Volkova [10]
45 I think is the answer
7 0
3 years ago
In parallelogram QRST QS RT Is QRST a rectangle ?
fomenos

Answer:

The correct option is A.

Step-by-step explanation:

It is given that the QRST is a parallelogram and the diagonals QS and RT are congruent.

According to the property of parallelogram if the length of diagonals are same, then the parallelogram is rectangle. We can also prove it.

Let QRST be an parallelogram and QS=RT.

In triangles QRT and RQS.

RT=QS         (Diagonals)

QR=QR         (Common side)

QT=RS         (Opposite sides of the parallelogram are same)

So by SSS rule of congruence, triangle QRT and triangle RQS are congruent.

By CPCT,

\angle R=\angle Q

Since the sum of two consecutive angles of a parallelogram is 180 degree.

\angle R+\angle Q=180

2\angle R=180

\angle R=90

Therefore the measure of angle R and angle Q are 90 degree.

Similarly in triangle QST and RTS,

RT=QS         (Diagonals)

ST=ST         (Common side)

QT=RS         (Opposite sides of the parallelogram are same)

So by SSS rule of congruence, triangle QST and RTS are congruent.

By CPCT,

\angle S=\angle T

Since the sum of two consecutive angles of a parallelogram is 180 degree.

Therefore the measure of angle S and angle T are 90 degree.

Since the measure of all interior angles of QRST are 90 degree, therefore the parallelogram QRST  is a rectangle.

6 0
4 years ago
Read 2 more answers
Other questions:
  • A line a
    11·2 answers
  • 3. Riley records the number of
    14·2 answers
  • Please help wit all the questions!! leave explanation below thanks!
    7·1 answer
  • Figure LMNO maps to L’M’N’O’ by a 125° rotation about point T Which congruency statement is correct?
    6·2 answers
  • Which function(s)are decreasing on the interval
    8·1 answer
  • What is the distance between the police station and the City Hall?
    7·1 answer
  • In the casino game of roulette, a gambler can bet on which of 38 numbers the ball will land when the roulette wheel is spun. On
    8·1 answer
  • What is the least common denominator of 8 and 12
    8·1 answer
  • Which of the following is a term of -5.92?
    9·1 answer
  • Which event would be closest to having a probability
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!