1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
2 years ago
6

Can anyone help me out with this?​

Mathematics
1 answer:
bogdanovich [222]2 years ago
5 0

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

You might be interested in
The least common denominator of<br><br> 3/2 and 2/3
amid [387]

6 is the least common denominator

6 0
3 years ago
Solve. (x-4)²=5<br> PLEASE HELP
goldenfox [79]

Answer:

A

Step-by-step explanation:

(x-4)^2=5

(x-4)(x-4)=5

x(x-4)-4(x-4)=5

distribute

x^2-4x-4x+16=5

combine like terms

x^2-8x+16=5

move terms to the left and combine

x^2-8x+11=0

use the quadratic formula and simplify

x=-(-8)+/-2 to the square roots of 5 over 2

separate and solve

x=4+ square root of 5

x=4- square root of 5

ANSWER: x=4+/- square root of 5

8 0
2 years ago
Can somebody please help me and quick? thxs​
zmey [24]
The answer is 15%

Explanation:

Team A has 42 members and team b has 18 more than team A so team b has 60 members. In order for the teams to be equal, there’d need to be 51 people on each team(60+42/2=51). There are 9 extra people on team b, so we need 9/60 , divide and you get 15%.
6 0
3 years ago
HELP HOW WOULD I DO THIS? WHAT WOULD THIS BE?? HELP !! PLEASE
Ymorist [56]
You have to find the area of the four triangles which is the perimeter of the base and multiply. It by your height and your case you have to find out if it’s a slant height.
6 0
3 years ago
I need help with this question.
Papessa [141]

Answer:

It's A, c =2.5d

Step-by-step explanation:

When it comes to problems like this, I usually look through the answers and try to plug in the numbers until I get the right equation that fits with the graph.

2.5(5) = 12.5

2.5(10)= 25

2.5(15)= 37.5

2.5(20) = 50

2.5(25) = 62.5

If you compare this to the graph, you'll notice the solutions are the same as the Total Cost (c). That's because c= 2.5d is the right equation for this graph. (Sorry if my explanation is confusing)

5 0
2 years ago
Other questions:
  • Twelve education students, in groups of four, are taking part in a student-teacher program. Mark cannot be in the first group be
    14·2 answers
  • Formula: A=bh/2<br><br> if b=50 and h=20, then A=?<br><br> Can someone explain how to solve this?
    15·1 answer
  • write an equation of the parabola in intercept form that passes through (14,4) with x intercepts of 12 and -6​
    14·1 answer
  • Kerry takes up a delivery consignment. He delivers a few packages and one-fourth of
    10·1 answer
  • A man is 6 feet tall. At 1:00, he casts a shadow that is 18 inches long. A nearby tree is 32 feel tall. At the same time of day,
    5·1 answer
  • Find the value of x ?
    13·1 answer
  • Cuanto es 8por8por5por3
    15·2 answers
  • Prove each of the following statements about integers by proving thecontrapositive of the statement.A. If 3nis even, thennis eve
    13·1 answer
  • May I please receive help?
    7·1 answer
  • 6.39x10^23kg in standard form
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!