1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
2 years ago
6

Can anyone help me out with this?​

Mathematics
1 answer:
bogdanovich [222]2 years ago
5 0

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

You might be interested in
If f(x) = 4* + 12x and g(x) = 5x - 1, find (f + g)(x).​
Rudik [331]

Answer:

\large\boxed{(f+g)(x)=4^x+17x-1}

Step-by-step explanation:

(f+g)(x)=f(x)+g(x)\\\\f(x)=4^x+12x,\ g(x)=5x-1\\\\(f+g)(x)=(4^x+12x)+(5x-1)=4^x+17x-1

4 0
2 years ago
teacher has 27 students in her class she asked the students to form as many groups of 4 as possible how many students are not be
stepan [7]
If there are 27 students in the class and they have to form as many groups of 4 as possible, you can calculate this using the following step: 

27 / 4 = 6.75 = 6 3/4

Result: 27 students can form 6 groups of 4 students and 3 students have to form their own group.
4 0
2 years ago
The angle of elevation of the top of a tower from a point 100m away is 45 degrees. What is the height of the tower to the neares
OLEGan [10]
<h3>Answer: 100 meters</h3>

===========================================

Explanation:

If you draw out the diagram, then you'll find that a 45-45-90 triangle forms. The nice thing about this type of triangle is that the two legs are always the same length. The horizontal leg is 100 meters, so the vertical leg must also be 100 meters.

Side note: this type of triangle is an isosceles right triangle.

---------

You could use the tangent rule to get the same thing

tan(angle) = opposite/adjacent

tan(45) = 100/x

1 = 100/x

1*x = 100

x = 100

In this case, the opposite leg is the vertical leg since it is furthest from the angle of elevation.

5 0
3 years ago
Read 2 more answers
Find the value of x if 8∧3x/2∧10 = 4∧2x/16
solniwko [45]

Answer:

Solve for

x

by cross multiplying.

Exact Form:

x=

6/5

Decimal Form:

x=

1.2

Mixed Number Form:

x=

1 1/5

6 0
3 years ago
The point-slope form of the equation of the line that passes through (-9, -2) and (1, 3) is y – 3 = {(x - 1). What is the
Marina86 [1]

Option A is the correct answer, y = x + 2

y - 3 = x-1

If you bring the 3 to the R.H.S, it becomes y = x + 2

If you substitute the values,

3 = 1 + 2

3 = 3

Thus, e equation is correct

4 0
2 years ago
Other questions:
  • What is the area of triangle GHJ
    8·1 answer
  • What is the value of x?
    7·1 answer
  • John read the first 1 1 4 114114 pages of a novel, which was 3 33 pages less than 1 3 3 1 ? start fraction, 1, divided by, 3, en
    7·1 answer
  • 10. Use substitution to solve the system of equations below.<br> - x + 2y = 5<br> 3x - 5y =-11
    9·1 answer
  • Explain why the figure is a parallelogram…. Please I need help ASAP.
    9·1 answer
  • Write these numbers in standard form.
    13·1 answer
  • Use the graph below to graph the system of inequalities. Be sure to include your shading.
    10·1 answer
  • Find the area of the rectangle
    8·1 answer
  • what percentage of simple interest returest reture must a firm get on their deposit if it wants its birr 25000 to grow to birr 2
    6·1 answer
  • Divide. Round your answer to the nearest tenth.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!