1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
3 years ago
14

Need a quick answer please!​

Mathematics
1 answer:
ANTONII [103]3 years ago
7 0

Answer:

It’s going to be b

Step-by-step explanation:

Because add then then divide then put the x on top and simplify then and then subtract

You might be interested in
In 2 hours (x) Frank earned $31(y). In 4 hours he earned $62
zubka84 [21]
Explanation:
In 2 hours (x) Frank earned $31(y)
In 4 hours (x) Frank earned $62(y)

2x = 31y
31 / 2 = 15.5
4x = 15.5 x 4 = 62y
7 0
3 years ago
Mrs white wants to crochet beach hits and baby afghans for a church fund raising bazaar. she needs 7 hours to make a hat and 4 h
Georgia [21]
She can make 5 hats and 6 afghans in 60 hours and will make $159 and have a good stock of each item or she could make 8 hats and 1 afghan in 60 hours and make $204 for the most profit.

5 0
3 years ago
Which expression is equivalent to 6 (a - 3)<br><br> A. 18a<br> B. 6(a)-6(3)<br> C.6(a) - 3<br> D. 3a
zaharov [31]

Answer:

Step-by-step explanation:

B. :) 6(a) -6(3) is the same as 6 (a - 3) which simplifies to 6a-18. If I helped, please mark as brainliest! <3

3 0
3 years ago
Read 2 more answers
Please help me with this question thank you
gulaghasi [49]

Answer:

\mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

Step-by-step explanation:

Given

y=\sqrt{\frac{2x+1}{x-1}}

Taking square of both sides

y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)\:^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Simplify}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=0

As we know that \mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2:\quad \left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)

so

\left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)=0        

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2x+1}{x-1}}=0

\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}

y+\sqrt{\frac{2x+1}{x-1}}-y=0-y

\sqrt{\frac{2x+1}{x-1}}=-y

\mathrm{Square\:both\:sides}

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2

\mathrm{Expand\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}=a^{\frac{1}{2}}

=\left(\left(\frac{2x+1}{x-1}\right)^{\frac{1}{2}}\right)^2

=\frac{2x+1}{x-1}

so equation  \left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2 becomes

\frac{2x+1}{x-1}=y^2

now

\mathrm{Solve\:}\:\frac{2x+1}{x-1}=y^2

\frac{2x+1}{x-1}=y^2

\mathrm{Multiply\:both\:sides\:by\:}x-1

\frac{2x+1}{x-1}\left(x-1\right)=y^2\left(x-1\right)

2x+1=y^2\left(x-1\right)

2x+1=xy^2-y^2         ∵  y^2\left(x-1\right):\quad xy^2-y^2

2x=xy^2-y^2-1

2x-xy^2=-y^2-1

x\left(2-y^2\right)=-y^2-1         ∵ \mathrm{Factor}\:2x-xy^2:\quad x\left(2-y^2\right)

\mathrm{Divide\:both\:sides\:by\:}2-y^2

\frac{x\left(2-y^2\right)}{2-y^2}=-\frac{y^2}{2-y^2}-\frac{1}{2-y^2}

x=\frac{-y^2-1}{2-y^2}

so

y+\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\le \:0\right\}

similarly

y-\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

\mathrm{Verify\:Solutions}:\quad x=\frac{-y^2-1}{2-y^2}

\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Remove\:the\:ones\:that\:don't\:agree\:with\:the\:equation.}

\mathrm{Plug}\quad x=\frac{-y^2-1}{2-y^2}

y^2=\left(\sqrt{\frac{2\left(\frac{-y^2-1}{2-y^2}\right)+1}{\left(\frac{-y^2-1}{2-y^2}\right)-1}}\right)^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=0

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2:\quad \left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)

so

\left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\le \:0

\mathrm{Solve\:}\:y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\ge \:0

\mathrm{True\:for\:all}\:y

Therefore,  \mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

6 0
3 years ago
Question below. Please answer it, its math.
AleksAgata [21]

Answer:

- 0.8

Step-by-step explanation:

The first thing we want to do here is simplify the expression -

\frac{3}{5}( 2x + 5 ) - 2x, Distribute the " \frac{3}{5} " to elements within the parenthesis

= \frac{3}{5} * 2x + \frac{3}{5} * 5 - 2x, Focus on simplifying the expression " \frac{3}{5} * 2x + \frac{3}{5} * 5 "

= 2\cdot \frac{3}{5}x+5\cdot \frac{3}{5} - 2x

= \frac{6x}{5}+3 - 2x, Combine fractions

= -\frac{4x}{5} + 3

= -\frac{4}{5}x + 3

So we have our simplified expression "  -\frac{4}{5}x + 3, " with -\frac{4}{5} being the coefficient of x. Our requirements are that this fraction should be expressed as a decimal, so we can simply divide the numerator by the denominator to figure that out,

- 4 / 5 = - 0.8,

Solution = - 0.8

4 0
4 years ago
Other questions:
  • a student randomly chooses one pen from a box containing 1 black, 3 red, and 6 blue pens. what is the probability that the stude
    14·1 answer
  • the glee club is going to have a float in the parade. they made 437 paper flowers for the float last week. they made 322 more th
    10·2 answers
  • Please help me ASAP!!
    10·1 answer
  • Suppose y varies directly with x. If y = 6 when x = 2, find x when y = 12.
    14·1 answer
  • LOTS OF POINTS, EASY QUESTION
    5·2 answers
  • How many minutes can I cd hold
    6·1 answer
  • If an item weighs 45 kilograms, what is its weight in pounds?<br> 20<br> 63<br> 90<br> 99
    12·2 answers
  • Find the slope of the line that passes through the points (2, -3) and (5, -4).
    15·2 answers
  • How do you solve this system by elimination? 2x + 4y =8
    9·1 answer
  • What is 649 divided by 73 ​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!