Use cos^-1(0.6157) and u might find the answer
Answer:
<em><u>First</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>top</u></em><em><u>:</u></em>
5. 3. 10
<em><u>Second</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>middle</u></em><em><u>:</u></em>
9. 7. 2
<em><u>Third</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>bottom</u></em><em><u>:</u></em>
4. 8. 6
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>grid</u></em><em><u> </u></em><em><u>would</u></em><em><u> </u></em><em><u>be</u></em><em><u>,</u></em>
5. 3. 10
9. 7. 2
4. 8. 6
900 divided by 12 so thats $75 each month
Answer:
9.2
Step-by-step explanation:
Apparently my answer was unclear the first time?
The flux of <em>F</em> across <em>S</em> is given by the surface integral,

Parameterize <em>S</em> by the vector-valued function <em>r</em>(<em>u</em>, <em>v</em>) defined by

with 0 ≤ <em>u</em> ≤ π/2 and 0 ≤ <em>v</em> ≤ π/2. Then the surface element is
d<em>S</em> = <em>n</em> • d<em>S</em>
where <em>n</em> is the normal vector to the surface. Take it to be

The surface element reduces to


so that it points toward the origin at any point on <em>S</em>.
Then the integral with respect to <em>u</em> and <em>v</em> is


