1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
2 years ago
12

Describe the steps to dividing imaginary numbers and complex numbers with two terms in the denominator?

Mathematics
1 answer:
zlopas [31]2 years ago
3 0

Answer:

Let be a rational complex number of the form z = \frac{a + i\,b}{c + i\,d}, we proceed to show the procedure of resolution by algebraic means:

1) \frac{a + i\,b}{c + i\,d}   Given.

2) \frac{a + i\,b}{c + i\,d} \cdot 1 Modulative property.

3) \left(\frac{a+i\,b}{c + i\,d} \right)\cdot \left(\frac{c-i\,d}{c-i\,d} \right)   Existence of additive inverse/Definition of division.

4) \frac{(a+i\,b)\cdot (c - i\,d)}{(c+i\,d)\cdot (c - i\,d)}   \frac{x}{y}\cdot \frac{w}{z} = \frac{x\cdot w}{y\cdot z}  

5) \frac{a\cdot (c-i\,d) + (i\,b)\cdot (c-i\,d)}{c\cdot (c-i\,d)+(i\,d)\cdot (c-i\,d)}  Distributive and commutative properties.

6) \frac{a\cdot c + a\cdot (-i\,d) + (i\,b)\cdot c +(i\,b) \cdot (-i\,d)}{c^{2}-c\cdot (i\,d)+(i\,d)\cdot c+(i\,d)\cdot (-i\,d)} Distributive property.

7) \frac{a\cdot c +i\,(-a\cdot d) + i\,(b\cdot c) +(-i^{2})\cdot (b\cdot d)}{c^{2}+i\,(c\cdot d)+[-i\,(c\cdot d)] +(-i^{2})\cdot d^{2}} Definition of power/Associative and commutative properties/x\cdot (-y) = -x\cdot y/Definition of subtraction.

8) \frac{(a\cdot c + b\cdot d) +i\cdot (b\cdot c -a\cdot d)}{c^{2}+d^{2}} Definition of imaginary number/x\cdot (-y) = -x\cdot y/Definition of subtraction/Distributive, commutative, modulative and associative properties/Existence of additive inverse/Result.

Step-by-step explanation:

Let be a rational complex number of the form z = \frac{a + i\,b}{c + i\,d}, we proceed to show the procedure of resolution by algebraic means:

1) \frac{a + i\,b}{c + i\,d}   Given.

2) \frac{a + i\,b}{c + i\,d} \cdot 1 Modulative property.

3) \left(\frac{a+i\,b}{c + i\,d} \right)\cdot \left(\frac{c-i\,d}{c-i\,d} \right)   Existence of additive inverse/Definition of division.

4) \frac{(a+i\,b)\cdot (c - i\,d)}{(c+i\,d)\cdot (c - i\,d)}   \frac{x}{y}\cdot \frac{w}{z} = \frac{x\cdot w}{y\cdot z}  

5) \frac{a\cdot (c-i\,d) + (i\,b)\cdot (c-i\,d)}{c\cdot (c-i\,d)+(i\,d)\cdot (c-i\,d)}  Distributive and commutative properties.

6) \frac{a\cdot c + a\cdot (-i\,d) + (i\,b)\cdot c +(i\,b) \cdot (-i\,d)}{c^{2}-c\cdot (i\,d)+(i\,d)\cdot c+(i\,d)\cdot (-i\,d)} Distributive property.

7) \frac{a\cdot c +i\,(-a\cdot d) + i\,(b\cdot c) +(-i^{2})\cdot (b\cdot d)}{c^{2}+i\,(c\cdot d)+[-i\,(c\cdot d)] +(-i^{2})\cdot d^{2}} Definition of power/Associative and commutative properties/x\cdot (-y) = -x\cdot y/Definition of subtraction.

8) \frac{(a\cdot c + b\cdot d) +i\cdot (b\cdot c -a\cdot d)}{c^{2}+d^{2}} Definition of imaginary number/x\cdot (-y) = -x\cdot y/Definition of subtraction/Distributive, commutative, modulative and associative properties/Existence of additive inverse/Result.

You might be interested in
Evaluate ab + c for a = 2, b = 3, and c = 4.<br><br> 9<br> 10<br> 27
Kazeer [188]
Substituting the values given, we get
(2)*(3) + 4 ;
Using BODMAS
We get
6 + 4
= 10
6 0
3 years ago
Read 2 more answers
X^2+9x+20=0<br><br> What are the steps to solve by factoring?
Dimas [21]
First simplify the equation and next multiply the 20 with the x^2 and find a number that adds together to give you the middle
6 0
3 years ago
Read 2 more answers
i have to write equations in standard form using integer coefficients for A,B, and, C Example: y= -8/15x + 1/20
uysha [10]

Answer:

c

Step-by-step explanation:

5 0
3 years ago
(m+n)¹⁰; The 6th term will contain m?n?​
Nataly_w [17]

Answer:

252.m^5.n^5

Step-by-step explanation:

6 0
2 years ago
Add [1/-4 3/5] [-2/6 -2/4]
brilliants [131]

Answer:

​25/138

Step-by-step explanation:

1 Convert 4\frac{3}{5}4

​5

​

​3

​​  to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a

​c

​

​b

​​ =

​c

​

​ac+b

​​ .

\frac{1}{-(\frac{4\times 5+3}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​4×5+3

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

2 Simplify  4\times 54×5  to  2020.

\frac{1}{-(\frac{20+3}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​20+3

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

3 Simplify  20+320+3  to  2323.

\frac{1}{-(\frac{23}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

4 Simplify  \frac{2}{6}

​6

​

​2

​​   to  \frac{1}{3}

​3

​

​1

​​ .

\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{2}{4})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​3

​

​1

​​ −

​4

​

​2

​​ )

5 Simplify  \frac{2}{4}

​4

​

​2

​​   to  \frac{1}{2}

​2

​

​1

​​ .

\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{1}{2})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​3

​

​1

​​ −

​2

​

​1

​​ )

6 Find the Least Common Denominator (LCD) of \frac{1}{3},\frac{1}{2}

​3

​

​1

​​ ,

​2

​

​1

​​ . In other words, find the Least Common Multiple (LCM) of 3,23,2.

LCD = 66

7 Make the denominators the same as the LCD.

-\frac{1\times 2}{3\times 2}-\frac{1\times 3}{2\times 3}−

​3×2

​

​1×2

​​ −

​2×3

​

​1×3

​​

8 Simplify. Denominators are now the same.

-\frac{2}{6}-\frac{3}{6}−

​6

​

​2

​​ −

​6

​

​3

​​

9 Join the denominators.

\frac{-2-3}{6}

​6

​

​−2−3

​​

10 Simplify  -\frac{1}{3}-\frac{1}{2}−

​3

​

​1

​​ −

​2

​

​1

​​   to  -\frac{5}{6}−

​6

​

​5

​​ .

\frac{1}{-(\frac{23}{5})}\times \frac{-5}{6}

​−(

​5

​

​23

​​ )

​

​1

​​ ×

​6

​

​−5

​​

11 Move the negative sign to the left.

-\frac{1}{\frac{23}{5}}\times \frac{-5}{6}−

​

​5

​

​23

​​

​

​1

​​ ×

​6

​

​−5

​​

12 Invert and multiply.

-\frac{5}{23}\times \frac{-5}{6}−

​23

​

​5

​​ ×

​6

​

​−5

​​

13 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}

​b

​

​a

​​ ×

​d

​

​c

​​ =

​bd

​

​ac

​​ .

-\frac{5\times -5}{23\times 6}−

​23×6

​

​5×−5

​​

14 Simplify  5\times -55×−5  to  -25−25.

-\frac{-25}{23\times 6}−

​23×6

​

​−25

​​

15 Simplify  23\times 623×6  to  138138.

-\frac{-25}{138}−

​138

​

​−25

​​

16 Move the negative sign to the left.

-(-\frac{25}{138})−(−

​138

​

​25

​​ )

17 Remove parentheses.

\frac{25}{138}

​138

​

​25

​​

7 0
3 years ago
Other questions:
  • What is an dividend in a math equation?
    6·1 answer
  • An interior angle of a regular polygon has a measure of 108. What type of polygon is it?
    15·2 answers
  • larina recieved a $50 gift card to an online store. she wants to purchase some bracelets that cost $8 each. there will be a $10
    13·2 answers
  • "a number increased by thirty-five"
    10·1 answer
  • RSM HOMEWORK HELP!!! PLEASE HELP ME ASAP!!
    5·1 answer
  • Solve equation <br> √ 13x+27=√ 4x
    8·1 answer
  • Determined if the graph represents a polynomial function if it does determine the number of turning points and the least degree
    15·1 answer
  • The circular base of a cone has a radius of 5 centimeters. The height of the cone is 12 centimeters, and the slant height is 13
    12·1 answer
  • PLEASEEEEEE HELPPP IM BEGGING YOU PLSSSSSS
    12·1 answer
  • …… help me pls ………xxxdxxxx
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!