The correct answer is option (a) Scanning tunneling microscope.
Microscopes are used to see the objects at molecular level. Scanning tunneling microscope( STM) is a type of optical microscope that uses optics(light) and lenses to see the enlarged size of the object. This microscope use a small metal tip under a high voltage. when this tip of microscope is brought close to the metal, the metallic tip of microscope draws electrons from the atom (metal) to be observed. This generates an electric current. There is a computer system attached to the microscope that detects the change in the electric current. Computer plots the change in position of atoms in metal.
The
infected papaya trees will produce less carbohydrates or chemical energy for the toucan. If there were fewer carbohydrates within each papaya, the
toucan's muscle cells would not be able to obtain as much chemical energy as
they normally do. This chemical energy will be converted into mechanical energy
or heat flow, which the toucan uses to fly.
Therefore, the lower amount
of mechanical energy and heat flow from the muscle contractions, it would
result into a reduced amount of kinetic energy of motion when the toucan is
flying.
Clubfoot describes a range of foot abnormalities usually present at birth (congenital) in which your baby's foot is twisted out of shape or position. In clubfoot, the tissues connecting the muscles to the bone (tendons) are shorter than usual.
1. In the heart, an action potential originates in the (E) sinoatrial node.
The cardiac action potential is a term referring to the change in the membrane potential of heart cells causing the heart to contract. Cardiac action potentials are created by a group of specialized cells capable of generating automatic action potentials and are located in the right atrium of the heart. These cells are called sinoatrial node and sometimes are referred to as the natural pacemaker of the heart. This characterization originates from the fact that sinoatrial node continuously provides action potential and sets the rhythm of the heart function.
2. The sequence of travel by an action potential through the heart is (A) sinoatrial node, atrioventricular node, atrioventricular bundle, bundle branches, Purkinje fibers.
As explained above, the cardiac action potential originates from the sinoatrial node. This action potential then travels through the atrioventricular node, which belongs to the electrical conduction system of the heart and is located between the atria and the ventricles. It is responsible for the electrical connection between the right atrium and the right ventricle. The action potential then travels to the atrioventricular bundle (or bundle of His), another part of the electrical conduction system of the heart. The atrioventricular bundle transmits the electrical impulses from the atrioventricular node to the bundle branches. The bundle branches then send the signal to the Purkinje fibers which send the electrical impulses to the ventricles, causing them to contract.
3. The correct answer is A.
The generation of an action potential in the sinoatrial node causes the contraction of the atria. When the action potential passes from the sinoatrial node to the atrioventricular node, it slows down. This causes the transport of the electrical impulse from the atria to the ventricles to slow down. This delay enables the blood (from the contraction of the atria) to fill the ventricles before their contraction.
4. This statement is true.
The interventricular septum is a structure which divides the two ventricles of the heart and it is composed of two branches, the left bundle and the right bundle branch. When the action potential reaches the interventricular septum, it then travels to the apex of the heart from where it travels upwards along the walls of the ventricles and the ventricular contraction begins.
5. This statement is true.
The bundle branches gradually become Purkinje fibers located in the interior of the ventricular walls. Purkinje fibers are specialized cells and are responsible for conducting cardiac action potentials from the bundle branches to the ventricular walls. This signal transduction causes the muscle of the ventricular walls to contract.
Answer:
In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield, find a cure for a particular disease, or save animals threatened by a natural disaster. In applied science, the problem is usually defined for the researcher.
Explanation:
I hope this helps, but when you use this make sure you copy and paste this to paraphrasing tool.