First, we calculate of the concentration of the H+ ions in the solution from the pH given. Then, calculate the new concentration after dilution. Calculation are as follows:
pH = -log[H+]
5 = -log[H+]
[H+] = 1 x 10^-5 M
M1V1 = M2V2
<span>1 x 10^-5 M (V1) = M2(100V1)
</span>M2 = 1 x 10^-7
pH = -log[<span>1 x 10^-7</span>]
pH = 7
It depends on the pH level of the water.
Answer:
Molar absorptivity or molar extinction co-effecient = 2120.14 cm⁻¹M⁻¹
Explanation:
First convert Concentration from ppm inM or mol/l
⇒ Molar mass of KMnO₄ = 158.03 g
⇒ 4.48 ppm = 4.48 mg/l = 4.48 x 10⁻³ g/l
⇒ Molarity =
= 2.83 x 10⁻⁵ molar
Absorbance (A) = - log(T) ( T = % transmittance)
= - log(0.859)
= 0.06
According to Lambert Beer's law
ε = 
or, ε = 
or, ε = 2120.14 cm⁻¹M⁻¹
Where
ε = Molar absorptivity
A = absorbance
C = Molar concentration of KMnO₄ solution
l = length
Answer: 2) Electron X absorbs energy when it changes to a higher energy level.
Explanation:
The electrons in an atom exist in various energy levels. When an electron moves from a lower energy level to a higher energy level, energy is absorbed by the atom. When an electron moves from a higher to a lower energy level, energy is released (often as light).
An electron because that is the only part able to be lost or gained without nuclear action needed