1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flauer [41]
3 years ago
15

Can anyone Plz help me in this question (see the attachment) Fast Plz tomorrow is my exam.... ​

Mathematics
1 answer:
vaieri [72.5K]3 years ago
7 0

Answer:

I hope this helps. When you're drawing yours, make this widths of the bars the same. Leave a gap before drawing your bars.

Please give brainliest.

I've you don't understand something, please comment

You might be interested in
How do I determine if it is a tangent?​
Rashid [163]

Answer:

it would be the hypotenuse and opposite side for this equation

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is 372.23 times 53
Reil [10]
The answer would be 19,728.19
5 0
4 years ago
Samir is an expert marksman. When he takes aim at a particular target on the shooting range, there is a 0.95 probability that he
Ad libitum [116K]

Answer:

40%

Step-by-step explanation:

The probability he misses at least one of the targets is 1 minus the probability that he hits all of the targets.

P = 1 − 0.95¹⁰

P = 1 − 0.599

P = 0.401

Rounded, there is a 40% chance he misses at least one target.

6 0
3 years ago
WILL GIVE BRAINLEIST DUE AT 9:45 P.M. PLS HURRY SUPER EASY. Write a division problem that has a solution of 42.
Llana [10]

Answer:

84/2=42

Step-by-step explanation:

The multiplication problem 42×2 has a product of 84, this also means that 84/2 is a dividend of 42.  This means that 84/2 is 42

5 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the following equations. <br> 50w = 1,050
    10·2 answers
  • (15 points please help)
    15·2 answers
  • How do I solve this problem
    8·1 answer
  • In a certain city, electricity costs $0.15 per kwh. what is the annual cost for electricity to power a lamp post for 6.5 hours p
    15·1 answer
  • Priya and Tyler are discussing the figures shown below. Priya thinks that B, C, and
    6·1 answer
  • The ______________ property of angle congruence states that if angle A is congruent to angle B, then angle B is congruent to Ang
    13·2 answers
  • Which of the following indicates the division property of equality when solving –12x = 48?
    6·1 answer
  • Letter consonants in NUMBERS​
    14·1 answer
  • What is the length of my
    7·1 answer
  • Complete the flow proof below by filling in the reasons for 1, 2, 3, 4, and 5.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!