Yes you did, congratulations ;-)
-they can get the same answer
Answer:
Therefore the angle that the line through the given pair of points makes with the positive direction of the x-axis is 45°.
Step-by-step explanation:
Given:
Let
A(x₁ , y₁) = (1 , 4) and
B( x₂ , y₂ ) = (-1 , 2)
To Find:
θ = ?
Solution:
Slope of a line when two points are given is given bt

Substituting the values we get

Also Slope of line when angle ' θ ' is given as

Substituting Slope = 1 we get


We Know That for angle 45°,
tan 45 = 1
Therefore

Therefore the angle that the line through the given pair of points makes with the positive direction of the x-axis is 45°.
Answer:
Solution : Option C
Step-by-step explanation:
We have the equations r² = x² + y², x = r cos(θ), and y = r sin(θ) that can be used to solve this problem. In this case we only need the second two equations ( x = r cos(θ), and y = r sin(θ) ) as we don't need to apply the concept of circles etc here.
Given : x = - 9,
( Substitute r cos(θ) for x )
r cos(θ) = - 9,
r = - 9 / cos(θ)
( Remember that sec is the reciprocal of cos(θ). Substitute sec for 1 / cos(θ) )
r = - 9 sec(θ)
Therefore the third option is the correct solution.