Option A:
The equation for the trend line is y = 82x + 998.
Solution:
The points on the line are (2, 1162) and (11, 1900).
Here, 
Slope of the line:



m = 82
Point-slope formula:



Add 1162 on both sides of the equation.

The equation for the trend line is y = 82x + 998.
Hence Option A is the correct answer.
Answer:
√
8
≈
3
Explanation:
Note that:
2
2
=
4
<
8
<
9
=
3
2
Hence the (positive) square root of
8
is somewhere between
2
and
3
. Since
8
is much closer to
9
=
3
2
than
4
=
2
2
, we can deduce that the closest integer to the square root is
3
.
We can use this proximity of the square root of
8
to
3
to derive an efficient method for finding approximations.
Consider a quadratic with zeros
3
+
√
8
and
3
−
√
8
:
(
x
−
3
−
√
8
)
(
x
−
3
+
√
8
)
=
(
x
−
3
)
2
−
8
=
x
2
−
6
x
+
1
From this quadratic, we can define a sequence of integers recursively as follows:
⎧
⎪
⎨
⎪
⎩
a
0
=
0
a
1
=
1
a
n
+
2
=
6
a
n
+
1
−
a
n
The first few terms are:
0
,
1
,
6
,
35
,
204
,
1189
,
6930
,
...
The ratio between successive terms will tend very quickly towards
3
+
√
8
.
So:
√
8
≈
6930
1189
−
3
=
3363
1189
≈
2.828427
Answer:
x = - 30
Step-by-step explanation:
x/3 + 8 = - 2 subtract 8 from both sides of the equation
x/3 = -2 - 8 = -10 now multiply both sides by 3
x = -30
For line A,
if we increase x by 1 unit then y increases by 4 units i.e. (1,3) and similarly another point becomes
(2,7).
For line B,
if we increase x by 1 uni then y also increases by 1 unit i.e ( 1,1) and similarly another points becomes (2,2),(3,3),(4,4), etc.
For line C,
if we increase x by 3 units then y increases by 1 units i.e.(3,1) and similarly another points becomes
(7,2) and so on.
In above lines, the value of x is exactly equal to that of y in line B.
therefore, line B has constant proportionality between x and y.