Hello :
<span>f(x)= x +2 and g(x)= 1/x
</span><span>(g o f)(x) = g(f(x))=g(x+2) = 1/(x+2)</span>
The firts thig we are going to do is create tow triangles using the angles of elevation of Paul and Jose. Since the problem is not giving us their height we'll assume that the horizontal line of sight of both of them coincide with the base of the tree.
We know that Paul is 19m from the base of the tree and its elevation angle to the top of the tree is 59°. We also know that the elevation angle of Jose and the top of the tree is 43°, but we don't know the distance between Paul of Jose, so lets label that distance as

.
Now we can build a right triangle between Paul and the tree and another one between Jose and the tree as shown in the figure. Lets use cosine to find h in Paul's trianlge:



Now we can use the law of sines to find the distance

between Paul and Jose:



Now that we know the distance between Paul and Jose, the only thing left is add that distance to the distance from Paul and the base of the tree:

We can conclude that Jose is 33.9m from the base of the tree.
She has $18.50 so she needs $39.50.
6.50×3= 19.50
18.50+19.50= 38
5.25×4=21
38+21=59
Maya would have enough money to go on the trip.
An expression that is equivalent to the statement Subtract a from the quotient of 6 and B is 6/b - a
<h3>How to write equivalent expression</h3>
Given statement
Subtract a from the quotient of 6 and B
- The quotient of 6 and B can be written as 6/B
- a subtracted from 6/B is written as
6/B - a
Therefore, the correct option equivalent to the statement is option A) 6/B - a
Learn more about equivalent expression:
brainly.com/question/2972832
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


The coefficient of x is the slope of the line , So the slope of the above equation is -3 .
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Remember from now on ,
Product of multiplying the slopes of two lines which are perpendicular to each other , is -1 .
Thus ;

m is the slope of the line which we want.

Negatives simplifies

Divide sides by 3


♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
We have following equation to find the point-slope form of the linear functions :

x(0) and y(0) are the coordinates of the point which the line passed through.


Add sides 8

Done....
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️