Answer:
42m/s
Step-by-step explanation:
acceleration = speed/time
7.0 = s/6.0
42.0m/s = speed
The question is incomplete. Here is the complete question:
Samir is an expert marksman. When he takes aim at a particular target on the shooting range, there is a 0.95 probability that he will hit it. One day, Samir decides to attempt to hit 10 such targets in a row.
Assuming that Samir is equally likely to hit each of the 10 targets, what is the probability that he will miss at least one of them?
Answer:
40.13%
Step-by-step explanation:
Let 'A' be the event of not missing a target in 10 attempts.
Therefore, the complement of event 'A' is 
Now, Samir is equally likely to hit each of the 10 targets. Therefore, probability of hitting each target each time is same and equal to 0.95.
Now, 
We know that the sum of probability of an event and its complement is 1.
So, 
Therefore, the probability of missing a target at least once in 10 attempts is 40.13%.
(a+b)^7= a^7+ 7a^7b+ 21 a^6b²+ 35a^5b³+ 35 a⁴b⁴+ 21 a³b^5 + 7a²b^6 + b^7
Answer:
The probability of selecting a black card or a 6 = 7/13
Step-by-step explanation:
In this question we have given two events. When two events can not occur at the same time,it is known as mutually exclusive event.
According to the question we need to find out the probability of black card or 6. So we can write it as:
P(black card or 6):
The probability of selecting a black card = 26/52
The probability of selecting a 6 = 4/52
And the probability of selecting both = 2/52.
So we will apply the formula of compound probability:
P(black card or 6)=P(black card)+P(6)-P(black card and 6)
Now substitute the values:
P(black card or 6)= 26/52+4/52-2/52
P(black card or 6)=26+4-2/52
P(black card or 6)=30-2/52
P(black card or 6)=28/52
P(black card or 6)=7/13.
Hence the probability of selecting a black card or a 6 = 7/13 ....
Answer:
C. 13 gallons
Step-by-step explanation:
150 divided by 6 is 25. 325 divided by 25 is 13.