Answer:
Some diseases are more common in certain groups of people, such as Caucasians or African Americans because individuals in such ethnic groups often share certain alleles (versions of their genes), that have been passed down to them from common ancestors and a particular genetic disorder may be more frequently seen in such groups if one of these shared genes contains a disease-causing mutation.
Explanation:
Some genetic diseases are frequently seen in certain ethnic groups like Caucasians or African Americans. Individuals in such groups often share certain alleles (versions of their genes), that have been passed down to them from common ancestors and one of these shared genes may contains a disease-causing mutation.
Examples of certain genetic disorders that are more common in particular ethnic groups include the Tay-Sachs disease, which is more common in people of eastern and central Europe (Ashkenazi), Jewish or French Canadian ancestry and the sickle cell disease, which occur among people of African, African American, or Mediterranean heritage.
Some genetic disorders are more common in people whose ancestry can be traced to a particular geographic area. The factors that can lead to development of populations with very different genetic allele frequencies include their geographic origin, selection, patterns of migration, historic events, etc. Certain natural barriers like oceans and other water bodies, high mountains, large deserts, or major cultural factors had prevented communication and interaction between people. So mating was restricted within the group, and this produces genetic marker differences and differences in the presence of specific disease-related alleles.
Answer:
I think it's a PEBBLE, or River Rock it's type of a rock that can be found on shallow bodies of water
I would personally choose the lets bake a model
0.388 Hope this helped let me know if it was wrong :)
The answer is A, denature.
As each type of enzymes has its own optimum temperature, like the temperature that they work fastest at, so if the temperature goes too high above the optimum, the 3D structure of the enzyme breaks apart and deforms and they can no longer bind with substrates thus no longer works. In this scenario, we say the enzyme is denatured.
Note that only if the temperature is too high can make the enzyme denature, if the temperature is too low, instead, the enzyme would be inactive, but once the temperature goes back to normal, they work again. Unlike denatured enzymes, which does not work even if the temperature goes back to normal.